The framework, which facilitates observation handling, climate generation, lateral boundary coupling, and postprocessing is referred to as HCLIM, the climate version of the HIRLAM–ALADIN Research on Mesoscale Operational NWP in Euromed (HARMONIE) system.
Model description
HCLIM is developed by a consortium of national meteorological institutes in close collaboration with the HIRLAM-ALADIN NWP and ACCORD model development. HCLIM includes three different atmospheric physics packages AROME, ALARO and ALADIN, which are designed for use at different horizontal resolutions. The latest version is HCLIM43, succeeding the prior versions, HCLIM38 (Belušić et al., 2020) and HCLIM36 (Lindstedt et al., 2015; Lind et al., 2016). Proven effective in various simulations across different domains (e.g., Belušić et al., 2020; Lind et al., 2020, 2023; Wu et al., 2020; Wang et al., 2023) and international collaborative projects (e.g., Coppola et al., 2020; Ban et al., 2021; Pichelli et al., 2021; Berthou et al., 2022; Médus et al., 2022; Lipzig et al., 2023), HCLIM stands out as a robust regional climate modelling system.
HCLIM-AROME is specifically developed for use at convection permitting resolutions, resolving deep convection explicitly and is generally applied to horizontal resolutions finer than 4 km. In HCLIM-AROME, the nonhydrostatic dynamical core (Bubnova et al. 1995; Bénard et al. 2010), developed by ALADIN is used. It solves the fully compressible Euler equations using a two time level, semi-implicit, semi-Lagrangian discretization on an Arakawa A grid. In the vertical, a mass-based hybrid pressure terrain-following coordinate is used (Simmons and Burridge, 1981; Laprise, 1992).
HCLIM-AROME parameterized radiation using a two-stream approximation in model columns and the effects of surface slopes are accounted for. The shortwave radiation computations follow Fouquart and Bonnel (1980), while the longwave radiation is from a rapid radiative transfer model (RRTM) with 16 spectral bands (Mlawer et al., 1997; Iacono et al., 2008). The cloud optical properties for liquid clouds are derived from Morcrette and Fouquart (1986) and from Ebert and Curry (1992) for ice clouds. HARMONIE-AROME uses a mixed-phase microphysics scheme, the ICE3 scheme (Pinty and Jabouille 1998, Lascaux et al., 2006) with additional modifications for cold conditions called OCND2 (Müller et al., 2017), wherein cloud water and ice as well as rain, snow, and graupel are prognostic variables. Hail is assumed to behave as large graupel particles. The turbulence parameterization is the scheme called HARMONIE with RACMO Turbulence (HARATU; Lenderink and Holtslag, 2004; Bengtsson et al., 2017).
HCLIM-ALARO is typically used for grid sizes of 4 km and larger, employing the hydrostatic version of the dynamical core (Temperton et al., 2001). ALARO-0 was employed in HCLIM38. The newer version ALARO-1 (Termonia et al., 2018) has not been implemented in HCLIM to date. In HCLIM38-ALARO, the ACRANEB2 radiation scheme by Ritter and Geleyn (1992) and Mašek et al. (2016) is used. Deep convection is parameterized using the 3MT scheme (Gerard et al., 2009), which separates resolved large-scale and convective clouds to avoid double counting convective processes at higher resolutions. The turbulence parameterization is a pseudoprognostic turbulent kinetic energy (pTKE) scheme (Geleyn et al., 2006), an extension of the Louis-type vertical diffusion scheme (Louis 1979).
HCLIM-ALADIN, used as a hydrostatic model, is employed for simulations with grid spacing close to or larger than 10 km. It is the limited-area version of the global model ARPEGE, from which it inherits all dynamics and physics options, as detailed in Termonia et al. (2018). Similarly to AROME, the radiation scheme is a simplified radiation scheme adapted from ECMWF, described in Mascart and Bougeault (2011). Deep convection is parameterized following Bougeault (1985), and turbulence is accounted for using the CBR scheme (Cuxart et al., 2000) with the mixing length from Bougeault and Lacarrere (1989). Microphysics are parameterized based on Lopez (2002) and Bouteloup et al. (2005).
The surface parameterization framework in HCLIM is SURFEX [Surface externalise (Masson et al., 2013)]. The subgrid surface heterogeneity is represented by four tiles which encompass continental natural surfaces, sea, inland water and urban areas. Urban surfaces are simulated by the TEB (Town Energy Balance; Masson, 2000) scheme that is based on the Urban Canyon approach (Nunez and Oke, 1977). Natural surfaces are parameterized using the Interactions Soil-Biosphere-Atmosphere model (ISBA, Noilhan and Planton, 1989). The inland water is simulated by the lake model FLake (Mironov et al., 2010). SURFEX is an external surface modelling system available off-line as well as coupled to atmospheric models. When coupled to an atmospheric model, SURFEX receives variables such as downward short-wave and long-wave radiation, surface air pressure, air temperature, humidity, wind and precipitation for every time step and then uses them to compute momentum and surface energy fluxes. In HCLIM43, SURFEX v8.1 is used together with land use data ECOCLIMAP Second Generation 300m (Druel et al., 2022), the sand / clay data SoilGrids250m version 2.0, and the orography data GMTED2010. A more thorough description of SURFEX v8.1 is given by Le Moigne (2018).
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D. et al., 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim. Dyn., 57, 275–302, doi: 10.1007/s00382-021-05708-w.
Bénard, P., Vivoda, J., Mašek, J., Smolíková, P., Yessad, K. and co-authors. 2010. Dynamical kernel of the Aladin-NH spectral limited-area model: revised formulation and sensitivity experiments. Q. J. Roy. Meteorol. Soc. 136(646), 155#169. DOI:10.1002/qj.522.
Belušić, D., de Vries, H., Dobler, A., Landgren, O., Lind, P., Lindstedt, D., Pedersen, R. A., Sánchez-Perrino, J. C., Toivonen, E., van Ulft, B., Wang, F., Andrae, U., Batrak, Y., Kjellström, E., Lenderink, G., Nikulin, G., Pietikäinen, J.-P., Rodríguez-Camino, E., Samuelsson, P., van Meijgaard, E., and Wu, M., 2020: HCLIM38: a flexible regional climate model applicable for different climate zones from coarse to convection-permitting scales, Geosci. Model Dev., 13, 1311–1333, https://doi.org/10.5194/gmd-13-1311-2020.
Bengtsson, L., Andrae, U., Aspelien, T., Batrak, Y., Calvo, J., de Rooy, W., Gleeson, E., Hansen-Sass, B., Homleid, M., Hortal, M., Ivarsson, K.-I., Lenderink, G., Niemelä, S., Nielsen, K. P., Onvlee, J., Rontu, L., Samuelsson, P., Muñoz, D. S., Subias, A., Tijm, S., Toll, V., Yang, X., and Køltzow, M. Ø.: The HARMONIE–AROME Model Configuration in the ALADIN–HIRLAM NWP System, Mon. Weather Rev., 145, 1919–1935, https://doi.org/10.1175/MWR-D-16-0417.1, 2017.
Berthou, S., Roberts, M. J., Vanniere, B., Ban, N., Belušić, D., et al., 2022: Convection in future winter storms over Northern Europe. Environ. Res. Lett., 17, 114055, doi: 10.1088/1748-9326/aca03a.
Bougeault, P.: A Simple Parameterization of the Large-Scale Effects of Cumulus Convection, Mon. Weather Rev., 113, 2108–2121, https://doi.org/10.1175/1520-0493(1985)113<2108:ASPOTL>2.0.CO;2, 1985.
Bougeault, P. and Lacarrere, P.: Parameterization of Orography-Induced Turbulence in a Mesobeta–Scale Model, Mon. Weather Rev., 117, 1872–1890, https://doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2, 1989.
Bouteloup, Y., Bouyssel, F., and Marquet, P.: Improvements of Lopez’s progonostic large scale cloud and precipitation scheme, ALADIN Newsletter, 28, 66–73, 2005.
Bubnová, R., Hello, G., Beńard, P. and Geleyn, J. 1995. Integration of the fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Weather Rev. 123(2), 515#535.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders, A., Ban, N., Bastin, S., Belda, M., Belušić, D., et al., 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Clim. Dyn., 55, 3–34, doi: 10.1007/s00382-018-4521-8.
Cuxart, J., Bougeault, P., and Redelsperger, J.-L.: A turbulence scheme allowing for mesoscale and large-eddy simulations, Q. J. Roy. Meteorol. Soc., 126, 1–30, https://doi.org/10.1002/qj.49712656202, 2000.
Druel, A., Munier, S., Mucia, A., Albergel, C., and Calvet, J.-C.: Implementation of a new crop phenology and irrigation scheme in the ISBA land surface model using SURFEX_v8.1, Geosci. Model Dev., 15, 8453–8471, https://doi.org/10.5194/gmd-15-8453-2022, 2022.
Ebert, E. E., and J. A. Curry, 1992: A parameterization of ice cloud optical properties for climate models. J. Geophys. Res.,97, 3831, doi:10.1029/91JD02472.
Fouquart, Y., and B. Bonnel, 1980: Computations of solar heating of the earth’s atmosphere: A new parameterization. Beitr. Phys. Atmos., 53, 35–62.
Gerard, L., Piriou, J.-M., Brožková, R., Geleyn, J.-F. and Banciu, D. 2009. Cloud and precipitation parameterization in a Meso-Gamma-Scale operational weather prediction model. Mon. Weather Rev . 137(11), 3960#3977. DOI: 10.1175/2009MWR2750.1.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res.-Atmos., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
Laprise, R. 1992. The Euler equations of motion with hydrostatic pressure as an independent variable. Mon. Weather Rev. 120, 197#207.
Lascaux, F., Richard, E., and Pinty, J.-P.: Numerical simulations of three different MAP IOPs and the associated microphysical processes, Q. J. Roy. Meteorol. Soc., 132, 1907–1926, https://doi.org/10.1256/qj.05.197, 2006.
Lenderink, G. and Holtslag, A. A. M.: An updated length-scale formulation for turbulent mixing in clear and cloudy boundary layers, Q. J. Roy. Meteorol. Soc., 130, 3405–3427, https://doi.org/10.1256/qj.03.117, 2004.
Le Moigne, P., et al. 2018. Surfex Scientific Documentation. Technical Report. Météo-France. Download the technical report.
Lind, Petter, David Lindstedt, Erik Kjellström and Colin Jones. 2016. Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models. Journal of Climate. DOI: 10.1175/JCLI-D-15-0463.1
Lind, P., Belušić, D., Christensen, O. B., Dobler, A., Kjellström, E., Landgren, O., Lindstedt, D., Matte, D., Pedersen, R. A., Toivonen, E., Wang, F., 2020: Benefits and added value of convection-permitting climate modelling over Fenno-Scandinavia. Clim. Dyn., doi: https://doi.org/10.1007/s00382-020-05359-3.
Lind, P., Belušić, D., Médus, E., Dobler, A., Pedersen, R. A., Wang, F., Matte, D., Kjellström, E., Landgren, O., Lindstedt, D., Christensen, O. B., & Christensen, J. H., 2022. Climate change information over Fenno-Scandinavia produced with a convection-permitting climate model. Clim. Dyn. 61, 519–541. https://doi.org/10.1007/s00382-022-06589-3.
Lindstedt, David, Petter Lind, Colin Jones and Erik Kjellström. 2015. A new regional climate model operating at the meso-gamma scale; performance over Europe. Tellus A, 67, 24138. DOI: 10.3402/tellusa.v67.24138
Lipzig, N.P.M.v., Walle, J.V.d., Belušić, D. et al., 2023: Representation of precipitation and top-of-atmosphere radiation in a multi-model convection-permitting ensemble for the Lake Victoria Basin (East-Africa). Clim. Dyn., 60, 4033–4054, doi: 10.1007/s00382-022-06541-5.
Lopez, P.: Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes, Q. J. Roy. Meteorol. Soc., 128, 229–257, https://doi.org/10.1256/00359000260498879, 2002.
Louis, J. 1979. A parametric model of vertical eddy fluxes in the atmosphere. Bound Layer Meteorol. 7, 187#202.
Masson, V., 2000. A Physically-based scheme for the Urban Energy Budget in atmospheric models. Boundary-Layer Meteorol. 94, 357-397. https://doi.org/10.1023/A:1002463829265.
Masson, V., Le Moigne, P., Martin, E., Faroux, S., Alias, A. and co-authors. 2013. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev. 6(4), 929#960. DOI:10.5194/gmd-6-929 2013.
Mašek, J., Geleyn, J.-F., Brožková, R., Giot, O., Achom, H. O., and Kuma, P.: Single interval shortwave radiation scheme with parameterized optical saturation and spectral overlaps, Q. J. Roy. Meteorol. Soc., 142, 304–326, https://doi.org/10.1002/qj.2653, 2016.
Médus, E., Thomassen, E. D., Belušić, D., Lind, P., Berg, P., Christensen, J. H., Christensen, O. B., Dobler, A., Kjellström, E., Olsson, J., Yang, W., 2022: Characteristics of precipitation extremes over the Nordic region: added value of convection-permitting modeling. Nat. Hazards Earth Syst. Sci., 22, 693–711, doi: 10.5194/nhess-22-693-2022.
Mironov, D., Heise, E., Kourzeneva, E., Ritter, B., Schneider, N., Terzhevik, A., 2010. Implementation of the lake parameterisation scheme FLake into the numerical weather prediction model COSMO. Boreal Environ. Res. 15, 218–230.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.
Morcrette, J.-J., and Y. Fouquart, 1986: The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321–328, doi:10.1175/15200469(1986)043,0321:TOOCLI.2.0.CO;2.
Müller, M., Homleid, M., Ivarsson, K.-I., Køltzow, M. A. Ø., Lindskog, M., Midtbø, K. H., Andrae, U., Aspelien, T., Berggren, L., Bjørge, D., Dahlgren, P., Kristiansen, J., Randriamampianina, R., Ridal, M., and Vignes, O.: AROME-MetCoOp: A Nordic Convective-Scale Operational Weather Prediction Model, Weather Forecast., 32, 609–627, https://doi.org/10.1175/WAF-D-16-0099.1, 2017.
Noilhan, J., Planton, S., 1989. A Simple Parameterization of Land Surface Processes for Meteorological Models. Mon. Weather Rev. 117, 536-549, https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.
Nunez, M., Oke, T. R., 1977. The Energy Balance of an Urban Canyon. J. Appl. Meteorol. 16, 11-19. https://doi.org/10.1175/1520-0450(1977)016<0011:TEBOAU>2.0.CO;2.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P., Alias, A., Belušić, D., et al., 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Clim. Dyn., 56, 3581–3602, doi: 10.1007/s00382-021-05657-4.
Pinty, J.-P., and P. Jabouille, 1998: Mixed-phase cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Proc. Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.
Ritter, B. and Geleyn, J. 1992. A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Weather Rev. 120, 303#325.
Simmons, A. and Burridge, D. 1981. An energy and angular momentum conserving vertical finite-difference scheme and hybrid vertical coordinates. Mon. Weather Rev. 109, 758#766.
Temperton, C., Hortal, M., and Simmons, A.: A two-time-level semi-Lagrangian global spectral model, Q. J. Roy. Meteorol. Soc., 127, 111–127, 2001.
Termonia, P., Fischer, C., Bazile, E., Bouyssel, F., Brožková, R., Bénard, P., Bochenek, B., Degrauwe, D., Derková, M., El Khatib, R., Hamdi, R., Mašek, J., Pottier, P., Pristov, N., Seity, Y., Smolíková, P., Španiel, O., Tudor, M., Wang, Y., Wittmann, C., and Joly, A.: The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1, Geosci. Model Dev., 11, 257–281, https://doi.org/10.5194/gmd-11-257-2018, 2018.
Wang F., Belušić D., Amorim J. H, Ribeiro I. 2023. Assessing the impacts of physiography refinement on Stockholm summer urban temperature simulated with an offline land surface model. Urban Clim. 49, 101531. https://doi.org/10.1016/j.uclim.2023.101531.
Wu, M., Nikulin, G., Kjellström, E., Belušić, D., Jones, C., and Lindstedt, D., 2020: The impact of regional climate model formulation and resolution on simulated precipitation in Africa, Earth Syst. Dynam., 11, 377–394, doi: https://doi.org/10.5194/esd-11-377-2020.