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1. INTRODUCTION

1.1 Purpose of the manual 

This manual is intended to provide users of the PROBE computer code with necessary 
background information and assistance for successful use. The user in mind is supposed 
to have some knowledge in the field of computational fluid dynamics, i.e. fluid 
dynamics, numerical analysis and computer programming. However, the structure of 
PROBE allows the user to develop his/her understanding of the code and computational 
fluid dynamics in a gradual manner. PROBE, with its manual, is thus suitable as a 
teaching aid. 

The manual does not contain descriptions of applications of PROBE. These are given in 
separate CASE-reports, each of which provides a full description of how lo apply the 
code to a specific problem. The CASE-reports are thus essential supplementary material 
when one gets familiar with PROBE. 

After studying the manual and running a few applications from CASE-reports it is 
believed that the user will be in a position to carry out new applications. The reader 
without prior experience of computational fluid dynamics should, however, be aware of 
the fäet that numerieal prediction of fluid flow phenomena rarely becomes simple or 
standard. This is due to non-linearities in the basic equations and the boundary 
conditions. Written material can therefore only assist the user in getting a good result; 
the intelligence and insight ofthe user have lo be relied upon in most situations. 

1.2 The general features of PROBE 

PROBE (PROgram for �oundary Layers in the .!];nvironment) can be classified as an 
"equation solver for one-dimensional transient, or two dimensional steady, boundary 
layers". Typical examples of such boundary Jayers are the Ekman layer and the 
developing channel flow. A major difficulty in these kinds of flow is to characterise the 
turbulent mixing in mathematical terms. PROBE ernbodies a two-equation turbulence 
mode!, the k - r, mode!, which calculates mixing coefficients. Together with two 
momentum equations the turbulence mode! forms the basis for the hydrodynamical part 
of the mathematical mode!. In the basic version six additional variables are provided 
for: heat energy, salinity, and four concentrations. The number of concentrations can, of 
course, easily be increased when needed. 

PROBE has been struclured in a way which is believed to facilitate easy and safe use. 
The user will only be concemed with one subroutine, called CASE, while the rest ofthe 
program should not be subject lo modifications. Many applications will only require the 
insertion of about 15 FORTRAN-statements in CASE. 
PROBE is written in standard FORTRAN-77 and requires very litt!e memory. This 
makes the code suitable for both PC:s and main frame computers. All units are in the 
SI-system. 

1.3 What PROBE can do 

As already mentioned, it is boundary layers that is the class of flows considered. This 
may seem to be a rather narrowly restricted class of flows. However, the number of 
applications already carried out gives an opposite impression. For environmental flows 



and idealised one-dimensional analysis can often provide good insight and 
underslanding of a new problem, The name PROBE itself also indicates that a one­
dimensional analysis can be a preliminary sensor in a more complex (three­
dimensional) analysis. To give a first impression of what PROBE can do, a rew 
examples will be discussed briefly. 

A. The entrainment experiment by Kantha et al. ( 1977)

This laboratory experiment deals with the rate of deepening of an initially two-layered 
fluid suddenly exposed to shear on the surface, see Figure I. la. A race-track type of 
flume ensures that the experiment is one-dimensional. Predicted and measured 
deepening is shown in Figure I. I b. 

B. Autumn cooling of the ocean

The ocean Ekman layer, stratified with respect to both temperature and salinity, has 
been analysed with PROBE (see Omstedt el al., 1983). Unexpected phenomena, like 
loeal temperature maxima, are found both in field measurements and predictions, see 
Figure Llb. 

C. The adiabatic atmospheric boundary layer

An example of a two-dimensional steady situation is given in Figure 1. le, where the 
flow over an island is shown (from Nordblom, 1997). 

Hopefully, these examples will give the reader an impression of the kind of flows that 
PROBE can be applied to. Complete instructions on how to modify the code for thcse 
and other applications are provided in separate CASE-reports. These reports contain a 
description of the problem, the mathematical formulation, a few results of predictions, 
and a listing of the subroutine CASE. Presently available CASE-reports are listed in 
Chapter 8.2. 
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1.4 The history and future of PROBE 

The first version of PROBE, even though it had no name at the time, was presented in 
Svensson (1978). That version was designed for studies of the seasonal thermocline, but 
other applications could also be carried out. In fäet, it was lhe range of possible 
applications that motivated the conslruction of the present more general version of 
PROBE. 

The version was first released in 1984 and has now been successfully applied to a wide 
range of different problems. The 1986-version was further developed in severat 
respects, of which the more important ones are: A series of interacting runs can be 
performed, a moving free surface is introduced, and more flexibility is provided in 
terms of number of equations, cells, etc. The present 1997-version extends the 
capabilities of PROBE further by including two-dimensionat steady boundary layers 
into the class of flows that can be analysed with PROBE. 

The direction of future developments is closely related to the kind of applications that 
wil! be dominating. Among several possibilities one may mention: 

- Dispersed and layered two-phase flows. This is a difficult !ask, which will only be
undertaken, if the development work can be supported and motivated by a major
project.

- Re-write the code using object-oriented techniques. The present version does not
employ modem concepts in respect of code-construction and coding. When PROBE
is more closely integrated with other code-systems it may prove necessary to re­
,vrite the code.

1.5 Outline ofthe manual 

A brief descriptiön of the basic differential equation and its finite difference counterpart 
are given in the following chapter. Chapter 3 outlines the general features of the code. 
The instructions on the use of PROBE are given in Chapter 4. Advice on effective use 
can be found in Chapter 5, and finally in Chapter 6 some concluding remarks are given. 
Details of the differential equations employed and the finite difference equations are 
given in Appendix A, B and C, respectively. A listing of the code is the content of 
Appendix D. 

2. BRIEF DESCRIPTION 01<' BASIC EQUATIONS AND TECHNIQUES

2.1 The general differential equation 

All differential equations can formally be written as: 

Change Advection Diffusion Source/Sink 
intime 

4 

(2.1) 



where 4> is the dependent variable, t time, z vertical coordinate, x horizontal coordinate, 

u horizontal velocity, r, exchange coefficient, and s, source and sink tem1s. For one­

dimensional cases the advection tenn is not active and for two-dimensional steady cases 
the transient tenn is absent. The equation is fonnulated in a cartesian coordinate system 
shown in Figure 2.1 a. When 4> , as an example, is heat energy, the source tem1 will 

contain terms describing the penetration of short wave radiation, while for momentum 
the pressure gradient is a typical source term. Advcction along the vertical space 
coordinate is included to account for vertical transport in a reservoir due to in- and 
outflows. However, as it is not yet fully developed for general application, the term is, 
formally, included in the source tenn. A complete discussion of all differential 
equations is given in Appendix A. 

Boundary conditions may be specified in two difforent ways; either the value or the flux 
of the variable in question is given. lf a wind stress on a water surface is prescribed, it is 
thus the flux alternative that is chosen. 

2.2 Numerical methods employed 

The general differential equation can be integrated over a specified volume, a grid cell, 
with the following result: 

(2.2) 

where D,, A,, and B, are coefficients and S, and S, source lem1s. The grid 

arrangement is shown in Figure 2.1 b. It is seen that variables are stored in N locations. 
As two of these are on the boundaries, it follows that the number of cells is N - 2 . 
Equation (2.2) shows that the value of grid cell i, 4>,, is related to the values in the 

neighbouring cells </>,,i and </>,_
1

. The strength of the co!lllection is given by the 

coefficients A, and B,, which, on closer inspection, are found lo represent transport 

effects. The detailed derivation ofthe finite difference equations is given in Appendixes 
Band C. 

N 

z 

f ltotation) 

X j 

y 

oJ bl 

Figure 2.1. a) Coordinate system.
b) Grid cell arrangement.
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3. DESCRIPTION OF THE CODE

In this chapter the structure of PROBE and the purpose of the different subroutines will 
be explained. The reader is advised, while reading the following sections, to make a 
brief inspection of the listing of PROBE, supplied in Appendix D. 

3.1 Flow diagrams 

A flow diagram is given in Figure 3.1. As seen, the code is divided into two parts; the 
user section and the general seetion. In terms of FORTRAN lines the user subroutine 
CASE will only amount to a few percent ofthe total code, which amounts to about 1500 
lines including all comment statements. The flow diagram shows four links between the 
general section and the user section. It should be noted that three ofthese are within the 
DO-loop in MAIN, which is responsible for the advancement in lime (or space in a 2D 
steady calculation). This DO-loop runs from chapter 4 to 9, as indicated. This 
arrangement makes it possible to interact with the calculations in a simple way. An 
example of when this is needed is given by the boundary condition al a water surface 
for dissolved oxygen. If it is assumed that the oxygen content is al ils saturation value, 
one has to prescribe this value as a function of temperature, which is a calculated 
variable. A continues interaction is thus needed. 

The flow diagram in Figure 3 .2 shows the special arrangements for linked runs 
(NPROBE>l). In this mode PROBE may be thought of as an empty shell, which is 
filled only through the contents of the common blocks. The subroutine STORE has the 
task to store the common blocks and is thus called when it is time to read/write in a new 
common block. 
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3.2 General section subroutines 

MAIN 

For the purpose of describing only tbe main features of this subroutine, the special calls 
and loops for linked runs (NPROBE> 1) have not been explained. The reader is referred 
to Figure 3.2 and suitable CASE-report for further details of use. 

The subroutine that arranges and controls the calculation is called MAIN. In order to 
facilitate understanding, the different chapters in MAIN and their interaction with other 
subroutines are shown in the flow diagram. Chapter I provides input data initially set by 
DFAULT. Some ofthese data are modified by the user in subroutine CASE Chapter I, 
which is the first subroutine called. The grid and geometry is specified in DFAULT and 
CASE, and necessary calculations using !hese data are done in the subroutines GRID 
and AREAD, which are called from Chapter 2 of MAIN. Chapter 3 initialises dependent 
variables and variables, which are functions of the dependent variables. The main DO­
loop starts in Chapter 4 at the statement-number 400. In this chapter a new time-step is 
also calculated, according to the information given in CASE. Chapter 5 specifies time­
dependent boundary conditions The CALL CASE(2) statement gives a Iink to CASE 
Chapter 2, where transient boundary conditions can be provided. Chapter 6 calls the 
COMP-subroutine, which perforrns the solution of the equations. When leaving this 
chapter, the calculation has thus advanced one lime step. Then, in Chapter 7, density, 
temperature, and eddy viscosity are updated. Tests are also made to ensure that 
turbulent kinetic energy, k, and its dissipation rate E, are positive. The reason for this is 
that negative values may be generate-d, because of strong buoyancy forces, during the 
calculation. A small positive value is then prescribed. Chapter 8 calls the subroutine 
OUTPUT and also calls CASE(4), where user specific output may be generated. In 
Chapter 9 tests are made in order to decide whether to continue or to terrninate the 
calculation. If it is continued, a jump back to Chapter 4 is made. 

DFAULT 

This subroutine contains default values of all data that a user has to be concemed with. 
A detailed discussion ofthis subroutine is given in the next chapter ofthe manual. 

GRID 

The computational grid can be arranged in alternative ways (uniform, expanding, etc.) 
and !hat necessitates calculations of gridcell sizes, distances, etc. This is done in GRJD. 

AREAD 

Lakes and reservoirs have a variation of horizontal area with depth. ldealised area­
distributions can be generated from CASE and calculated in the subroutine AREAD. 

OUTPUT 

This subroutine, as the name indicates, is responsible for printout in various forms. 
Options, which are set in CASE, control the frequency of output in the form of integral 
parameters or profiles. 

9 



STORE 

When linked runs (NPROBE>l) are perfonned, all information of a specific run is 
contained in the common blocks. The subroutine STORE is used to store common 
blocks, which are presently not active. 

SURF 

Necessary changes of the grid, when a moving surface is present, are donc in lhis 
subrouline. 

PHYS 

As discussed in Chapter 2, all equations may be presented in lhe general fo!l1l: 

&.p a -+-u$
ot ax, , 

To identify a variable one has to specify the transport coefficienl, 1., and the source 

tell11, S
1

. This is done in subroutine PHYS. In Chapter A, the eddy-viscosity for 

gridnodes, F(I,JEMU), the Prandtl/Schmidt number, PRSCNU (I), and lhe effective 
viscosity, EMU(l), for cell boundaries are calculated. Also a reference transport 
coefficient DIFREF(I), which is the coefficienl for momenlum, is calculated. In Chapter 
B it is detell1lined which variable is considered, and in the relevant chapter the transport 
coefficienls and the source le!l1ls are supplied. 

COMP 

In this subroutine the execntion of a forward step is perfoll1led, and it is therefore used 
for each dependent variable at each time or space step. In order to save computer lime 
the F-array, which is the two-dimensional array where all variables are stored, is 
converted into a one-dimensional array. Necessary changes of indices are made in 
Chapter A. The results of subroutine PHYS are linked to COMP in Chapter B, where 
also the transport coefficients al the boundaries are included. The finite difference 
coefficients, derived in Appendix B, are calculated in Chapter C, and the equation is 
lhen solved in Chapter D. Depending on the type of boundary condition the flux or the 
value of the variable al a boundary is then calculated in Chapter E. 

BOUND 

The transport coefficienls close to the boundaries are ealculated assuming logarilhmic 
or linear profiles. When using these profile assumptions, info!l1lation about the 
hydrodynamic roughness length is needed. This information is given in CASE by 
specifying ROULLZ and ROULHZ. Transport laws for heat, salinity, and concentralion 
include lhe Stanton number for the variable in question. These numbers are specified in 
CASE, in the array STANTN. 

10 



PEA 

This subroutine contains the code of the Partial Elimination Algorithm, see Spalding 
(1976). The algorithm will allow a more stable solution for strongly coupled equations. 
In the present context it is the Coriolis' force !hat is responsible for the coupling. 

3 .3 User section subroutine 

Only one subroutine, CASE, is subject to modifications by the user. Going back to the 
flow diagram it is scen that CASE is divided into four chapters, each one having a 
specific purpose. Instrnctions on use of CASE will be given in the next chapter of the 
manual. 

From the flow diagram in Figure 3.2 one may note that the infonnation given in CASE 
has lo be selective for Iinked runs. This is done by a test ("an if-statement") on lPROBE, 
which is the running index for linkect runs. 

4. HOW TO USE PROBE

Suppose that PROBE has been installed on the user's computer and some cases have 
been nm for test purposes. The user is thus in a position to set up a new problem. It is 
then recommended that the steps outlined in this chapter of the manual are followed. 

4.1 Analysis ofthe problem considered 

The first question to address is whether the case considered is in the class of flows 
solved by PROBE. If not, can a meaningful approximation be made? If PROBE is 
believed to be applicable, the next step is to characterise the problem in terms of 
equations and boundary conditions. It is further recommended that an analysis of length 
and time scales is carried out. This will be helpful when the grid size in space and time 
is selected. If something like sine-period can be identified, one may, as a rule of thumb, 
need 20 grid-cells or time-steps to resolve this period. Later, a more careföl examination 
of grid size and time-step independence should always be made. 

To summarise, it can be stated that a careful analysis ofthe problem anda well-founded 
expected behaviour ofthe process will significantly simplify the computational task. 

4.2 Modification of default data 

ln this section the groups in DFAULT are explained and discussed. The valucs given in 
this subroutine are called the default values and are the values that will enter the 
calculation if not reset in CASE. The user is recommended to make notes about the 
modifications in each group that are needed for the case to be set up. The modifications 
will later be a part of the content of CASE. It should be emphasised that DFAULT 
belongs to the general section and should never be subject to direct changes. 

11 



Group 1 

C"""GROUP I. GRID IN SPACE AND TIME 

C-----N=NUMBER OP GRID CELLS PLUS 2. MAXIMUM=NIM. 

N=NIM 
TIME=0. 

11..AST=l.EI0 

LSTEP=I0 
C-----GRID DISTRIBUTION IN SPACE 

C-----IGRID=lNDEX POR GRID 

C =I GIVES UNIFORM GR!D 

C =2 GIVES EXPANDING GRID FROM LOW Z 

C =3 GIVES EXPANDING GRID FROM HIGH Z 

C =4 INDICA TES THAT THE GRID IS SPECIPIED IN CASE 

C ----SEE MANUAL POR DETAILS OPTHE EXPANDING GRID 
IGRID=I 

CEXPG=I.I 

DO Il IJK=l,NIM 
DZCELL(IJK)=0. 

Il CONTINUE 
C-----TIME STEP VARIATION 

C A V ARIABLE TIME STEP IS SPECIPIED BY THE TPRAC PIELD 

C TPRAC/10., 1.,200.,2., 16'0.i GIVES A TIME STEP OP 1.0 S 

C THE PIRST IOSTEPS POLLOWED BY 200 OP2.0S . 
C A CONSTANT TIME STEP IS OBTAINED BY SPECIPYING TPRAC(2) 

C IN CASE. 

DO 12 IJK=l,20 

TPRAC(IJK)=0. 

12 CONTINUE 

TPRAC(l)=l.E8 

C ITYPEP=INDEX POR TYPE OP FLOW 

C =I GIVES 1-DTRANSIENT FLOW (DEPAULT) 

C =2 GIVES 2-D PARABOLIC PLOW 

ITYPEP=I 

The maximum number of grid points that can be specified is NIM, which is a number 
that can be set by the user in a parameter statement (see Section 5.5) and has a standard 
value of 100. The actual number of grid points is called N. This means (see Figure 2.1) 
that the standard number of grid cells is 98. A calculation can be tenninated on two 
criteria; if the maximum number of time-steps, LSTEP, is reached or if the integration 
time, TIME has reached the maximum time, TLAST. 

The expanding grid system is based on the geometrical series. The expansion factor, 
CEXPG, is the ratio between the height of the two neighbouring cells. Guidance for 
choosing CEXPG is given by the following formulas: 

Size offirst cell in expansion = ZDIM*(CEXPG-l)/(CEXPGN-2-1) 
Size oflast cell in expansion = CEPGN-3•zDIM*(CEPG-l)/(CEXPGN-2.1)

Where ZDIM is the physical dimension in the Z-direction. 

The index ITYPEF is 1 for 1 D transient flows and 2 for 2D parabolic steady flows. 

12 



Group 2 

C• .... GROUP 2. PHYSICAL DIMENSIONS 

XDIM=I.EJO 
YDIM=l.El0 
ZDlM=l.EIO 

C-----YERTICAL AREA DISTRIBUTION 
C 
C-----lNDARE=INDEX FOR AREA-DISTRIBUTION 
C----- =l INDICATES UNIFORM AREA 
C----- =2 INDICATES LINEAR DISTRIBUTION 
C----- =3 INDICA TES NON-LINEAR DISTRB.,SEE MANUAL 
C----· =4 DISTR. SPECIFIED IN CASE 

INDARE=l 
AREAHZ=l.0 
CEXPA=2. 

The physical dimensions of the computational domain are given by ZDIM, XDIM and 
YDIM. ZDIM should always be rese! in CASE, while XDIM and YDIM will only be 
modified for special cases like lakes and reservoirs. 

The non-linear area distribution is generated with: 

AREA(])= (Z(I)/Z(N))**CEXPA * AREAHZ. 

CEXPA is thus the expansion factor, which has typical values from 
- 0.5 ta 2.0. The default value 2.0 is typical for Swedish lakes. The linear distribution is
obtained, if INDARE is put ta 2. CEXPA will then automatically be put ta 1.0, and the
above expression will then generate the linear distribution.

Group 3 

C .. •uoROUP 3. DEPENDENT VARIABLES 

C F(I.JRHOU)=X-DIRECTION MOMENTUM 
C F(l,JRHOY)=Y-DIRECTION MOMENTUM 
C F(I,JH)=HEAT-ENERGY 

C F(I,JS)=SALINITY 
C F(l,JK)=11JRBULENT KINETIC ENERGY 
C F(I,JD)=DISSIPATION OF TURBULENT KINETIC ENERGY 
C F(I,JCI)=CONCENTRATION NO.I 

C F(l,JC2)=CONCENTRA TION NO.2 
C F(I,JC3)=CONCENTRA TION NO.3 
C F(I.JC4)=CONCENTRA TION NO.4 
C F(I. IO+(NJM-l0))=ADDITIONAL YARIADLES ACTIYA TED FOR NJM> 10. 
C F(I,JEMU)=DYNAMICAL EDDY YISCOSITY 

C F(l,JTE)=TEMPERATURE 
JRHOU=l 
JRHOY=2 
Jll=3 
JS=4 

JK=S 

lD=6 

JC1=7 
JC2=8 
JC3=9 
JC4=10 
DO 31 IJK=l,NJM 
SOLYAR(IJK)=.FALSE. 

31 CONTINUE 
JEMU=NJMPl 
JTE=NJMP2 

PROBE solves for up ta 30 dependent variables in the standard set up. If more 
dependent variables are needed, a parameter statement (see Section 5.5) has ta be reset. 
NJM ( equal ta 30 in the standard set up) defines the number af variables accounted for. 
Two more, dynamical eddy viscosity and temperature, are stored in the F-array. It 
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Group 7 

C .. ***GROUP 7. SOURCE TERMS 

C 

C----CORIOLIS PARAMETER 

CORI=I.E-4 
C-----PRESSURE GRADIENTS 
C INDPX=INDEX FOR PRESSURE GRADIENTS IN X-DIRECTION 

C 
C 
C 

C 

=I GIVES PRESCRIDED CONSTANT PRESSURE 
GRADIENTS ,DPDXP. 

=2 GIVES PRESCRIDED MASSFLOW,RHOUP.ONLY 

RELEVANT FOR STEADY STATE PROBLEMS. 
C =3 GIVES PRESSURE GRADIENT DEVELOPMENT ACCORDING TO 
C HORIZONTAL EXTENT OF WATERBODY.ONL Y RELEVANT TO 
C LAKES AND RESERVOIRS. 
C =4 INDICATES THAT THE PRESSURE GRADIENTS ARE TO BE 
C READ FROM SEPARATEFILE AS A TIME SERIES. 
C =-1,-2,-3 OR -4 AS ABOVE,DUT WITH BUOY ANCY DAMPING 
C OF PRESSURE GRADIENTS(EFFECT OF TIL TED TERMOCL!NE). 

C INDPY=SAME FOR Y-DIRECTION 
RHOUP=<J. 

RHOVP=<J. 

DPDXP=0. 
DPDYP=0. 

PFILT=I. 

INDPX=I 
INDPY=I 

C-----IN- AND OU1FLOWS. 
C-----SEE MANUAL FOR INSTRUCTIONS ON USE 

DO 71 !JK=l,NIM 
QZ(!JK)=0. 
QINFL(!JK)=<l. 
QOUTFL(IJK)=0. 

DO72 IKJ=l,NJM 
PHIIN(IJ K,IIU)=0. 

72CONTINUE 
71 CONTINUE 

C-----SHORT-WA VE RADIATION 
C ASSUMED TO PENEIBATE THE WATER BODY. 
C FLXRAD=SHORT-WAVE RADIATION. 

C RADFRA=FRACTION ASSUMED TO BE A BOUNDARY FLUX 

C BETA=EXTINTION COEFFICIENT 
FLXRAD=0.0 

RADFRA=0.4 

BETA=0.I 

The details of the technique of calculating pressure gradients are given in Appendix A. 
When the option INDPX ( or INDPY) = 2 is used, one may get a diverging solution, 
which never reaches a steady state. The user must then reduce the time-step and the 
factor PFILT, which produces an under relaxation of the development of the pressure 
gradients. 

Unfortunately a trial and error procedure must be carried out to find the optimum values 
on the time-step and PFILT. When INDPX (or INDPY) equals 3, or -3, a non-unity 
PFIL T has another implication. The pressure-gradient formula for lakes and reservoirs 
simulates seiches with periods based on the dimensions of the water body. Often the 
period is of the order minutes, which requires a time-step of the order I O seconds ( one 
tenth ofthe seiche period). IfPFILT is put to, for example, 0.2, the seiche period will be 
5 times larger, and more economical time-step may be used. It should be noted !hat the 
main effects of the pressure gradients will still be present. Test calculations should be 
performed to establish whether this filtering of pressure significantly affects the overall 
behaviour of, for example, a seasonal stratification. 

The volume flux and the properties ofin- and outflows can be specified from CASE. 
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The volume t1uxes are specified in QINFL (I) and QOUTFL (I) for in- and outt1ows 
respectively. The in- and outt1ows generate a vertical volume t1ux, which is calculated 
from an application of the continuity equation cell by cell. Properties only need to be 
specified for int1ows and are given in 
PHIIN (I, J). lf QINFL "'- QOUTFL, when integrated over the depth, the moving 
surface option needs to be activated (see Group 13). 

Incoming short-wave radiation varies during the day and should therefore be specified 
in CASE, Chapter 2. Examples of how this is done can be found in CASE reports on 
thermoc!ine development. 

Group 8 

cu•,uGROUP 8. INITIAL DATA 
D0 81 lJK=l.NIM 
DPDX(IIKJ,<0. 
DPDY(llK):O. 
FW(IJK)=O. 
DO 82 IKJ=l,NJMP2 
F(llK,lKl)=O. 

82CONTINUE 
81 CONTINUE 

c ..... JNIT!AL!SE DEPENDENT V AR!ABLES 
C ISTPR=INDEX FOR STARTING PROFILES 
C =I PROFILESARESPECIFIEDWITH VSTl(l•NlM)·ZSTI(l•NlM)

C SEE MANUAL. 
C =2 PROFILES ARE SPECIFIED IN CASE WITHOUT THE USE

C OF VSTl(l•NJM)•ZSTI(l•NlM). 
C .. NQTE:DEFAULT VALUE FOR AI.L VAR!ABLES IS 0.0. 

JSTPR=l 
D0 83 IJK=l,NJM 
VSTl(!JK)=O. 
VSTI(!JK)=O. 
ZST l( Il K )=0. 
ZSTI(IJKpO. 

83CONT!NUE 

All variables in the F-array are here given the default value 0.0. Two altematives are 
available for the specification of non-zero initial profiles. If ISTPR equals I, profiles are 
specified according to Figure 4.I, while ISTPR equal 2 indicates that the profiles are 
specified directly in the F- array. 

e,---; 
vsrn41 

Figure 4.1. Specification ofinitial projiles o.f dependent variables. 

It is only the dependent variables that should be initialised; density, temperature, eddy 
viscosity, etc. are calculated as flmctions of the dependent variables in subroutine 
MAIN. In this context it is also necessary to remember that momentum and heat energy 
are the dependent variables, not velocity and temperature. 
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Group 9 

C*'"'GROUP 9. BOUNDAR Y CONDITIONS 
C 
C-----ITYPEH=INDEX FOR TYPE OF BOUNDARY AT HIGH Z 
C =I GIVES SOLID WALL(STATIONARY OR MOVING) 
C =2 GIVES SYMMETRY LINE 
C !TYPEL=SAME FOR LOW Z BOUNDAR Y
C 
C-----!KBHZ(J}=!NDEX FOR KJND OF BOUNDARY CONDIT!ON FOR 
C VARIABLE J AT H!GH Z BOUNDAR Y 
C =I GIVES PRESCRIBED VALUE 
C =2 GIVES PRESCRIBED FLUX 
C !KBLZ(J)=SAME FOR LOW Z BOUNDARY
C-----ITRHZ(l)=INDEX FOR TIMEDEPENDENCE OF BOUNDARY FOR 
C VARIABLEJ 
C =I GIVES STATIONARY CONDITIONS 
C =2 GIVES TRANSIENT COND!TIONS SPECIF!ED FROM CASE· 
C SUBROtmNE.SEE MANUAL FOR INSTRUCTIONS ON USE. 
C =l GIVES TRANSIENT CONDITIONS READ FROM FlLE 
C 11RLZ(J)=SAME FOR LOW Z BOUNDAR Y 
C-----!KBOT(J)=!NDEX FOR KIND OF BEHA V!OR AT BOTTOM POR VARIABLE J 
C ONL Y RELEVANT FOR CASES WITH VERT!CAL AREA-OISTR!B. 
C =I GIVES "CONSERVATIVE" CONDIT!ON.SEEMANUAL 
C =2 GIVES "NON-CONSERVATIVE" COND!T!ON.SEE MANUAL. 
C-----SPECff!CATION FOR STATIONARY BOUNDARY CONDITIONS 
C 

C-----SPECIFICATION FOR TRANSIENT CONDITIONS(ITRHZ OR !TRLZ=2).SEE MANUAL 
C 
C ···•SPEClFICATlON OFWALL-FKN PARAMEThRS. 
C 

ITYPBH=l 
ITYPEL:t 
0091 UK=l,NJM 
IKBHZ(llK)=2 
IKBLZ(IJK)=2 
ITRHZ(IIK)= I 
ITRLZ(IJK)=I 
!KBOT(IJK)=l
FLUXHZ(IJK)=O.
FLUXLZ(IIK)=O.
V I HZ(IJK)=O.
V2HZ(IJK)=O.
V3HZ(IJK}=O.
V4HZ(JJK)=O.
V5lJZ(IJK}=O.
V!LZ(IJK)=O.
V2LZ(IJK)=O.
VJLZ(ll K)•O.
V4LZ(l/K)=O.

V5LZ(IJK)=O.
STANTN(IJK)=I.E,3

91 CONTINUE 
lKBOT(l)=2 
IKBOT(2)=2 
IKBOT(5)=2 
IKBOT(6)=2 
STANTN(l)=I. 
STANTN(2)•1. 
STANTN(3)=0.05 
STANTN(5)=1. 
STANTN(6)=l. 
CAPPA=0.4 
C3D:9. 
ROULH7,;0. 
ROULLZ=O. 
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If ITYPEH is put to I, a wall is assumed to be present at the high Z boundary. This will 
activate the wall functions in subroutine BOUND. The symmetry line conditions can be 
used when a zero-flux condition prevails at the boundary in question. 

Transient boundary conditions can be specified for all dependent variables according to 
the following instructions: 

FLUX or 

VALUE 

, Y4HZl/:I , , VSHZ l>I 

Figure 4.2. Specificatian af transient baundary canditians. 

With analogous 
specification 

for lov1 Z 

The user must, of course, have made a decision , whether the boundary condition should 
be specified as value or a flux when the values above are given. Altematively the user 
may specify transient boundary conditions in CASE, Chapter 2. 

When a variable horizontal area is specified, the index IKBOT has to be considered. If 
IKBOT is put to I, a conservative condition is assumed, which means a zero flux 
through the bottom area for all cells, see Figure 4.3. This may be suitable for heat and 
salinity, while momentum is !ost in the bottom contact, which indicates !hat IKBOT 
should be put to 2 for momentum equations. Appendix B explains this point further. 

i 

i-1
� I { 

------- = 

Figure 4.3. Meaning af IKBOT 

0 for IKBOT(J) - 1 

Flux to cell i-1 for IKBOT(J) 2 

Wall functions require information about the roughness of the surfaces. This is specified 
in ROULHZ and ROULLZ, which are the roughness lengths, z, at high and low Z. A 
zero value indicates that the surface is hydrodynamically smooth. Heat, salinity, and 
concentrations are at a wall assumed to obey the following transport law: 

FLUX(�) =STANTN (�)u.t.� 

Where STANTN(�) is the Stanton number for variable �, i'.� is the difference in � 
between the boundary and the first cell, U. is the friction velocity. 
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Group 10 

c•••••GROUP 10. LIMITS AND NUMBERS 

EMTMIN=l.E-6 
FKMIN=l.E-15 
FDMIN=l.E-15 
TAUMIN=l.E-3 
KINDAV=I 

These numbers are minimum values that ensure that the variables considered never 
become negative. Normally they should not be changed. 

Group 11 

C*** .. GROUP 11. PRlNT OlIT 
C--·-----PRJNT CONTROL 
C --SET ITPLOT=2 FOR CROSS-STREAM PLOT, =I FOR NO PLOT 

ITPLOT=2 

C --SET NST AT,NPROF,NPLOT TO NUMBER OF STEPS BElWEEN OUTPUT OF 
C ST A TJON VALUES,PROFILES AND CROSS-STREAM PLOTS RESPECTJVEL Y 

NSTAT=IO 
NPROF=50 
NPLOT=IOO 

C --SET JNJOUT .FALSE. FOR NO INITIAL OUTPUT 
JNIOUT=.TRUE. 

C 
C---- SELECT PROFILES TO BE PRINTED AND PLOTTED. 
C-----U,V,T,S,IC,2C,3C,4C,K,E,EMU,SIGM,DPDX,DPDY,W,PRSCN,RIF,N,UW,VW 
C 1,2,3,4, 5, 6, 7, 8,9,IO,I I, 12, 13, 14,15, 16,17,18,19,20 
C-----PRINTED 
C-----PLOTTED 

DO 111 IJK=l,20 
PRPROF(IJK)=.FALSE. 
PLPROF(IJK)=.FALSE. 

111 CONTJNUE 
C 
C-----PARTICLE TRACKING.SEE MANUAL. 
C-----INDPT=INDEX FOR PARTICLE TRACKING 
C =0 GIVES NO TRACKJNG 
C =1-4 ONE TO FOUR PARTJCLES ARETRACKED 
C 

INDPT=O 
ILEVEL(l)=0 
ILEVEL(2)=0 
ILEVEL(3)=0 

ILEVEL(4)=0 
IPSA VE= I 000 

PRPROF is a logical aITay, which selects variables for printing ofprofiles. The particle 
tracking routine is activated by putting INDPT to I - 4, then I to 4 particles are to be 
tracked. Also ILEVEL, which is an array dimensioned to four, needs to be considered. 
If, for example, ILEVEL(2) =30, particle number 2 will be on leve! Z(30). By IPSA VE 
an interval, between which coordinates are to be saved, is specified. If IPSAVE = 10, 
the coordinates will be stored every tenth time step. Maximum number of steps that can 
be stored are 500. Examples on the use of the particle tracking routine can be found in 
CASE-reports. 

Group 12 

C*****GROUP 12.LINKED RUNS. 

DO 121 IJK=l,NPM 
NSTPDT(IJK)= I 

121 CONTJNUE 
NPROBE=I 

For linked runs, NPROBE is the number of runs to be done. NSTPDT(J) provides a 
means of having different time steps in different runs. One run should have NSTPDT = 
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1, which then indicates that this run should have the specified time step, DT. If another 
run has, as an example, NSTPDT(5) = 4, it gives a time step of DT/4 for run number 5. 
Note that it is not recommended to specify different time steps in different runs directly 
by TFRAC(2), due to the arranged interactions between the runs and the formulation of 
output sequences. 

Group 13 

C* .... GROUP 13. MOVING FREE SURFACE. 

MOVE=.FALSE. 

ZSSTRT=0. 

PREEVA=0. 

RETURN 

END 

MOVE is a logical, which is set to true, if a moving free surface is present. PREEV A is 
precipitation and evaporation with dimension [m/s] and positive along the vertical space 
coordinate. Rain on a lake surface is thus specified in [ m/s] and has a negative value. 
ZSSTRT means "Z-surface start" and gives the initial water surface leve!. This value 
needs to be smaller than ZDIM, which is the maximum surface leve! that is to be 
considered. 

4.3 The CASE subroutine 

Modifications of default values are included in Chapter 1 of CASE. 

Chapter 2 of CASE provides a link to the MAIN subroutine. The link is intended for the 
supply of transient boundary conditions, which can not be handled by the prepared 
functions. An example is meteorological data obtained from field measurements, which 
in this chapter should be read from a separate file and be included as transient boundary 
conditions. Additional source terms should be supplied in Chapter 3, which provides a 
link to the subroutine PHYS. A call is made from every dependent variable, and the user 
has to select the appropriate variable to be supplied with extra source terms. The 
following example shows a typical coding sequence: 

IF (J.NE.JCl) RETURN 

DO 10 I = 2, NMl 

FJClN = F(I+l,JCl)*WSED 

FJClS = F(I,JCl)*WSED 

IF(I.EQ.2) FJClS = 0.0 

IF(I.EQ.NMl) FJClN = 0.0 

10 SI(I) = SI(I) - (FJClN - FJClS)/DZCELL(I) 

RETURN 

A source term for variable C 1, which describes sedimentation with the settling velocity 
WSED, is thus added. Further examples can be found in CASE-reports. 

Additional output can be generated from Chapter 4 of CASE. The call to this chapter is 
also from MAIN but this time from the position where the standard output is called for. 
This ensures that the generated output is at the same integration time as the standard 
output. Extra output may be useful, for example, when the dependent variables are 
requested in a non-dimensional form. For linked runs one needs, as mentioned earlier, 
to select the correct run (test on IPROBE) when providing information in subroutine 
CASE. Examples can be found in CASE-reports. 
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4.4 Test calculation 

It is advisable to make a test calculation with LASTEP = 10 to make some preliminary 
checking. Assuming that compilation errors have been eliminated and that numbers are 
produced, the user should proceed through the following steps. 

Check the section "PRINCIPAL DATA USED". Is everything according to 
expectations? 
Check grid and initial profiles in the profile output called "INITIAL PROFILES". 
Is the output generated after 10 steps according to expectations? 

If no objections have been raised to the results produced, it is time to proceed with a 
longer run. If the output shows an unrealistic or unexpected behaviour, one has to go 
through the process of analysing and coding again. 

5. ADVICE ON EFFECTIVE USE

5.1 Grid independence in space and time 

A coarse grid, i.e. few cells and !arge time steps, needs less computer time and should 
be used <luring the preliminary stages of the calculations. However, only the grid­
independent solution, in space and time, represents the true implication of the 
differential equations. A systematic refinement of the grid must therefore always be 
carried out, if a claim that the differential equations have been solved is to be made. It is 
thus recommended that a coarse grid, which typically could be 15 grid-cells, is used in 
the preliminary stage and a grid refinement study is carried out before the final 
calculations are performed. 

5.2 Use ofintegral checks 

Integral checks for heat and salinity are supplied by PROBE. These should always be 
studied, as they may indicate errors in boundary conditions or in the stability of the 
numerical solution. Note that the integral checks are not valid, if extra source or sink 
terms are added to the equations for heat and salinity. 

When concentration equations are solved for, the user is advised to make estimates of 
the integral balances, when possible. 

5.3 Verification studies 

In order to get confidence in predicted results, some form of verification is needed. 
Some or all ofthe following steps may then be considered. 

Is it possible to idealise the situation in such way that an analytical solution can be 
obtained? If so, one may set up PROBE to solve the same situation, and an 
agreement that is only limited by the grid dependence should be the result. One 
should, of course, never expect more than 5 - 6 correct figures, due to the !imitation 
ofthe computer. 
Are there any laboratory experiments, which consider the basic physical processes, 
available? If so, these may be very useful for verification studies, as boundary
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conditions, initial conditions, and the quality of the recording of the process are 
nonnally known with good accuracy. 
Are there any other model-predictions for the problem considered available? [f so, 
and if !hese may be regarded as "well established and accepted", one may consider 
to repeat !hese. 
The final test is, of course, the application to the environmental problem itself This 
is the most difficult part with transient and olkn incomplete boundary conditions. 
This makes it often hard to judge the degree of success when comparing predictcd 
and measured behaviour. 

5.4 Causes of diverging solutions 

A diverging solution is nonnally easy to detect; integral checks are not fulfilled, and 
unrealistic profiles are predicted. Assuming that the user by studying CASE and initial 
output, has checked that the problem specification is correct, one may consider the 
following points: 

- Has it been finnly established that a solution to the problem, as it has been defined,
exists? One should, in this context, be particularly observant on the prescribed
boundary conditions.
Have all length and time scales in the problem been identified? If a typical period in
space or lime can be found, one may need I O 20 grid-cells or time-steps to resolve
the process.
If a lake or reservoir is considered, the seiche period will enter through lhe pressure
gradient fonnula. Once again a time-step of the order one tenth of the seiche period
is needed.
ff a sedimentation process is considered, one should estimate the time-step requircd
with respect to the settling velocity. The lime it takes for particle to trave! across a
grid-cell may be used as an estimate ofthe time-step required.

5.5 Some advice on mounting PROBE 

Test installation of the present version of PROBE have been carried out on V AX 8600, 
UNIVAC 1108, CRA Y, SUN and PC:s. The experiences from thesc installations can be 
summarised as: 

The inclusion of the paran1eter statements and the common-blocks needs to be 
arranged according to the computer used. 
The unlabelled common-block IAl in subroutine STORE needs to be dimensioned 
to NSTRI (and not 1) on some computers. Note that one then needs lo recompile the 
code, when the maximum number of cells, equations or runs are reset. 
Of the two common-blocks, which are to be included in most subroutines, one is 
unlabelled. This one corresponds to IAI in subroutine STORE. It may be necessary, 
on some computers, to have these two common-blocks as labelled and then also, as 
mentioned above, give IAI the dimension NSTRI. 
TFRAC(l) is the number of time steps with time step TFRAC(2). TFRAC(l) is 
converted into an integer in the code. The default value 108 may be too !arge for 
some computers (especially PCs) to convert into an integer. Reset TFRAC(l) in 
CASE, Chapter I, if this is the casc. 

When the code has been mounted and found to reproduce resulls from test cases, the 
user may wish to change the pre-set maximum number of cells, equations or linked 
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runs. This is done in the parameter statements proceeding the common-blocks. When 
any of !hese values (NIM, NJM or NPM) is rese!, one also needs to rese! NSTORI (for 
the first common-block) and NSTORE (the size of both the common-blocks, NSTORI 
+ I 07). NSTORI is calculated according to:

NSTORI = (27 * NIM + 27 * NJM + NIM * (NJM+2) + NIM * NJM + NPM + 64), 
which is equal to 9804 for the pre-set values. 

6. CONCLUDING REMARKS

It is time to recall a sentence from the introduction, stating that computational fluid 
dynamics seldom becomes standard or simple. It is therefore not possible, and has not 
been the objective, to write a manual that ensures safe use of PROBE. Instead it is 
hoped that it will assist a potential user, who is expected to add his/her own insight and 
intelligence. 

7. NOMENCLATURE

The following glossary of FORTRAN variable names is arranged with reference to the 
GROUPS in the subroutine DFAULT. 
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Grouo Name Tvoe Meaning 
1 N lnteger Number of grid points 

I Time Real Integration time 

1 TLAST Real Maximum integration lime 

1 LSTEP lnteger Maximum number oftime steps 

I IGRID Integer Index for grid 

1 CEXPG Real Expansion factor for grid 

1 DZCELL(NIM) Real array Vertical dimension of cells 

1 TFRAC (20) Real array Specification oftimc step 

1 ITYPEF Integer Type of flow, 1 D or 2D 

2 ZDIM Real Physical dimension in Z-direction 

2 XDIM Real Physical dimension in X-direction 

I 
2 YDIM Real Physical dimension in Y-direction 

2 INDARE lnteger Index for area-distr. 

2 AREAHZ Real Horizontal area of top cell 

2 CEXPA Real Expansion factor for area-distr. 

3 F(NIM, NJM+2 Real array Dependent variables, eddy viscosity 
and temperature for all cells 

3 SOL V AR (NJM) Logical array Select variables lo be solved for 

4 CPHEAT Real Specifie heat 

4 RHOREF Real Reference density 

4 EMULAM Real Laminar viscosity 

4 PRL (NJM) Real array Laminar Prandtl/Schmidt numbers 

4 AGRAV Real Acceleration due to gravitv 
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Grouo Name Tvoe Meaning 
C(l-5)RHO Real Coefficient in eqn of state 

5 TREF Real Temperature ofmax. densily 

6 ITURBM Integer Index for turbulence mode! 

6 IPRSC Integer Index for Prandtl/Schmidt number 

6 EMUCON Real Constant turbulence viscosity 

6 PRT(NJM) Reat array Turbulent Prandtl/Schmidt number 

6 CD->CKSURF Real Constants in turbulence modet 

7 .CORI Real Coriotis' parameter 

7 INDPX Inte ger Index for pressure gradients 

7 INDPY Integer Index for pressure gradients 

7 RHOUP Real Prescribed mass flow I 
7 RHOVP Real Prescribed mass flow 

7 DPDXP Real Prescribed pressure gradient 

7 DPDYP Real Prescribed pressure gradient 

7 PFILT Real Pressure filtering eoeff. 

7 QZ(NIM) Real anay Vertical volume flux 

7 QINFL(NIM) Real anay Inflow 

7 QOUTFL(NIM) Real array Outflow 

7 PHIIN(NIM, Real array Properties of inflow 
NJM) 

7 FLXRAD Real Short wave radiation 

7 RADFRA Real Fraction of RADIN absorbed al 
surface 

7 BETA Real Extinction coefficienl 

•8 F(NIM, NJM+2) Real array See Group 3 

8
. 

DPDX nv , Real arra Pressure rad1ent, X-d1r. 
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Group Name
DPDY(NIM)

8 ISTPR

8 VSTl(NJM)
VST2(NJM)

8 ZSTl(NJM)
ZST2(NJM)

9 ITYPEH

9 ITYPEL

9 IKBHZ(NJM)

9 IKBLZ(NJM)

9 ITRHZ(NJM)

9 ITRLZ(NJM)

9 IKBOT(NJM)

9 FLUXHZ(NJM)

9 FLUXLZ(NJM)

9 VIHZ(NJM)
V5LZ(NJM)

9 STANTN(NJM)

9 CAPPA

CJB

9 ROULHZ

'ROULLZ

0 EMTMIN

'Tvoe
Real array

Integer

Real array

Real array

Inte ger

Integer

Integer array

Integer array

Integer array

lnteger array

Integer array

I Real array

I Real array

I Real array

Real array

/Real

Real

Real

Real

Real
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Meaning
Pressure gradient, Y-dir.

Index for starting profiles

Vales for starting profiles

Z-levels for starting profiles

Index for boundary at high Z

Index for boundary at low Z

Index for boundary conditions at high

Index for boundary conditions at low

Index for time-dependence at high Z

Index for time-dependence al low Z

, Index for behaviour at bottom

Flux al high Z

Flux al low Z

Specify transient boundary conditions

Stanton number

I Von Karman' s conslanl

Constant in wall-function

Roughness length at high Z

Roughness length at low Z

Min. value for eddy vise.
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Group Name 
10 FKMIN 

10 

11 

11 

11 

11 

11 

11 

11 

12 

13 

13 

, 13 

FDMIN 

TAUMIN 

KlNDAV 

NSTAT 

NPROF 

PRPROF (20) 

INDPT 

ILEVEL(4) 

IPSAVE 

INIOUT 

NSTPDT(NPM) 

NPROBE 

MOVE 

ZSSTRT 

PREEVA 

Type 
Real 

Real 

Real 

Integer 

Integer 

Integer 

Logical array 

Integer 

Integer array 

\ 
Integer 

'Logical 

Integer array 

Integer 

Logical 

\ Real

!Real
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Meaning 
Min. value for turb. energy 

Min. value for dissipation 

Min. shear for wall-functions 

Index for harmonic or aritmetic 
averaging of diffusion coefficient 

Steps between station values 

Steps between profiles 

Selected printed profiles 

Index for particle tracking 

Levels for tracking 

Steps between saved coordinates 

Controls initial output 

Numbers of steps on each time step 
for each run 

Number of linked runs 

Activates the moving surface mode 

Initial water surface leve! 

Precioitation/evaporation 
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8.2 Presently available CASE-reports. 

A. Basic fluid mechanics, heat and mass transfer

A I. The laminar plane Poiseuille flow.
Urban Svensson (1984). 

A 2. The constant viscosity Ekman layer.
Urban Svensson (1984). 

A 3. The plane Couette flow.
Anders Omstedt (1984). 

A 4. The wind-induced channel flow.
Jörgen Sahlberg (1984). 

A 5. The turbulent plane Poiseuille flow.
Urban Svensson (1984). 

A 6. The extrainment experiment by Kantha, Phillips, and Azad.
Jörgen Sahlberg (1984). 

A 7. The entrainment experiment by Deardorff, Willis, and Lilly.
Urban Svensson (1984). 

A 8. The frazil ice experiments by Tsang and Hanley
Anders Omstedt (1984). 

A 9. Dispersion ofmarked fluid elements.
Urban Svensson (1985). 

B. Oceanography

B 1. The homogeneous Ekman layer.
Anders Omstedt (1984) 

B 2. Mixed layer deepening in a continuously stratified rotating fluid.
Jörgen Sahlberg (1984). 

B 3. The Ekman boundary layer stratified with respect to salinity and
temperature. 
Anders Omstedt (1984). 

B 4. Supercooling and ice formation in a turbulent Ekman layer. 
Anders Omstedt (1984). 

B 5. Wind-forced sea ice motion. 
Anders Omstedt (1987). 

B 6. The development of a seasonal thermocline in the ocean. 
Urban Svensson (1984). 
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B 7. Inertial trajectories in the Baltic. 
Urban Svensson (I 984). 

B 8. Frazil ice and grease ice formation in the upp er layers of the ocean. 
Anders Omstedt (1985). 

B 9. The diumal thermocline. 
Göran Lindström (1985). 

B I 0. Dispersion in an ocean Ekman layer. 
Urban Svensson (1985). 

B 11. The water leve! response in two coupled ocean basins to tides and 
nvers. 
Anders Omstedt (1986). 

B 12. The exchange of properties between two ocean basins. 
Anders Omstedt (1986). 

B 13. Fjords with wide sounds. 
Anders Omstedt (1986). 

B 14. Autumn Cooling in the Kattegat, the Belt Sea, Öresund and the 
Arkona Basin. 
Anders Omstedt (1986). 

B 15. Vertically coupled Ekman !ayers. 
Urban Svensson (1986). 

B 16. Wind-forced sea ice motion <luring freezing and melting. 
Anders Omstedt (1987). 

B 17. The ocean boundary layer beneath drifting melting ice. 
Anders Omstedt ( 1988) 

B 18. Fjord exchange driven by coastal variations. 
Anders Omstedt (1988) 

B 19.Seasonal variations of a sea ice cover. 
Anders Omstedt ( 1990) 

B 20. Seasonal cycle of salinity in the Mackenzie Shelf/Estuary. 
Anders Omstedt (1993) 

C. HYDROLOGY

C I. Autumn cooling in a lake. 
Jörgen Sahlberg (1984). 

C 2. Thermocline development in a lake. 
Urban Svensson (1984). 
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C 3. Thermocline development in a reservoir with in- and outflows.
Urban Svensson (1984). 

C 4. Ice covered lake with sediment heat flux.
Jörgen Sahlberg ( I 984). 

C 5. Heat loss in an ice covered lake due toa heat pump.
Jörgen Sahlberg (I 984). 

C 6. Formation of frazil ice, slush and anchor ice in rivers.
Anders Omstedt. 

C 7. Transient groundwater flow.
Urban Svensson (1985). 

C 8. Heat and mass transfer in unsaturated soi 1s.
Urban Svensson (1985). 

C 9. Limestone treatment of acid lakes.
Urban Svensson (1985). 

C I 0. Dynamics of coupled reservoirs. 
Urban Svensson (1986). 

C I I. The seasonal freezing and thawing of soils. 
Urban Svensson (1987). 

C 12. Coupled unsaturated and saturated groundwater flow. 
Göran Lindström and Urban Svensson (1987). 

D. METEOROLOGY

D I. The steady neutral atmospheric Ekman layer. 
Urban Svensson (1984). 

D 2. Dispersion of a chimney plume. 
Urban Svensson (1985). 
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APPENDIXA 

MA THEMATICAL FORMULA TION 

I. Basic assumptions

Mos! assumptions are related to the one-dimensional treatment of the 
situations considered. All gradients in the horizontal directions are then 
neglected. The effect of a horizontal distribution of heat and momentum 
flux at a lake surface is thus not possible to include. 

It will further be assumed that turbulent mixing processes can be described 
by turbulent exchange coefficients. This description is based on Reynold's 
averaging ofNavier-Stoke's equations, which accordingly is assumed to be 
valid. The introduction of exchange coefficients and gradient laws exclude 
the proper treatment of counter gradient fluxes. Interna! absorption of short 
wave radiation is assumed to follow an exponential decay law. Gravitational 
effects are assumed to obey the Boussinesq approximation, and the effect of 
the rotation ofthe earth is described by the Coriolis' parameter. 

In PROBE vertical advection due to in- and outflows at different levels in a 
reservoir is accounted for. However, since the treatment is not general (for 
example, advective momentum transport across boundaries is not allowed), 
the advective tenn will not be included in the general treatment of the 
equations but considered as a source/sink term in the special case mentioned 
above. 

In the 1997 version of PROBE an option for two-dimensional steady 
parabolic flows is introduced. In the presentation below the set of equations 

for this option can be obtained by replacing the time derivative (a� I at) with 

an advective term (a�u I ax). A full account of the two-dimensional option 

is given in Nordblom (1997). 

2, Momentum cquations 

Within the assumptions made, the momentum equations read: 

(AI) 

(A 2) 

where t is time coordinate, x and y horizontal space coordinates, z vertical 
space coordinate, U and V horizontal velocities, p pressure, f Coriolis' 

parameter, and p density. The dynamical effective viscosity, µ,11, is the

sum of the turbulent viscosity, µr, and the laminar viscosity, µ. Pressure 



gradients may be treated m several ways, depending an the problem 
considered. 

a) Prescribed
b) Calculated with respect ta a prescribed total mass flux. The formula

employed is iterative af the following type:

8 i+l 8 ,. _E_ = _E_ + PFILT * �u -pu
P

)
ax ax 

(A 3) 

where i is iteration step, P FILT a constant, pu total mass flux and pu P
prescribed total mass flux. The formula produces a pressure gradient, 

- -

which in the steady state gives pu equal ta pu P. From the formula it 
can be understood that the value af PFILTwill not affect the converged 
solution. 

c) Pressure formula for lakes and reservoirs. In Svensson (1978) (see also
Svensson and Sahlberg (1989)) pressure formulas for lakes and
reservoirs were derived, which simulate the effect af the limited
horizontal extent af a water body:

�(ap)- n'vxD
at åy -

p
g L� 

- -

(A4) 

(A 5) 

where g is the acceleration due ta gravity, D depth, u and v mean 
velocities, 7t = 3.1416, and L

x 
and L

Y 
horizontal dimensions ofthe 

water body. 

0 
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Figure A.I. Jllustration oj stratification ejfects an the pressure gradient. 

It is however, necessary ta include the effect af stratification an the pressure 
gradients, as illustrated in Figure A. I. The tilted thermocline shown has 
been observed both in lakes and in the laboratory. Realising that the effect 
af the tilt is ta eliminate pressure gradients below the interface, one may 
formulate the following expressions: 



(A6) 

(A 7) 

where i is time leve! and M time step. It is thus formulae (A 4) and (A 5) 
with the time derivative expressed as a finite difference, that are the basic 
equations. From the formulae it is seen that the effects of stratification will 
be that pressure gradients are zero close to the bottom, since T then equals 
1;,,,,0,,, , and that they will be unaffected close to the surface, T then equals 

T,,;,Jace . These implications are qualitatively correct. The formulae do, 

however, not contain any mechanism for the generation or description of 
interna! oscillations. It should be mentioned that the formulae A 4 A 7 are 
tentative and have not yet been fully tested. 

3. Heat energy equation

(A 8) 

where 

(A 9) 
(J ej{ O' <:5 T 

temperature is denoted by T, c 
P 

is specific heat, R incoming short wave 

radiation, ri fraction of R absorbed at surface, f3 extinction coefficient, and 

cr ,JJ , cr,, and cr effective, turbulent and laminar Prandll numbers 

respectively. 

4. Salinity and concentration equations

These equations can be expressed in the general form: 

(A 10) 

where tp stands for salinity, s, or one of the concentrations cl, c2, c3 or c4. 
No source terms are provided for these variables. The user thus has to 
supply these explicitly, when it has been established what source and sink 
terms the concentration equation considered has. 



5. Turbulencc mode!

PROBE ernbodies a two equation turbulence mode!, the k - E model. A 
detailed description of the derivation and application of this mode! is given 
by Rodi (1980). The dynamical eddy viscosity is calculated from the 
turbulent kinetic energy, k, and its dissipation rate, E, by the 
Prandtl/Kolmogorov relation: 

(A Il) 

where Cµ is an empirical constant. The equations for k and E can be 
derived from the Navier-Stokes equations and thereafter modelled to the 
following form: 

Turbulent kinetic energy: 

(A 12) 

where 

g2a.(T-T0 )BT +ga.s_BS +ga.c, Bet ___ +ga.c4 8C,)(Al3)
cr,- öz cr,s Bz cr rc, Bz cr 1t4 

oz 

Dissipation of turbulent kinetic energy: 

8E a(µ,11 Bc j E[(au)' (av)'j E c' -=-�----+C,-·- --- +- +C,-P,-C,-(Al4)or Bz pcr, Bz ' k Bz Bz ' k -, k 

where P, is the production due to buoyancy, which includes contributions 
from heat energy, salinity and the four concentration equations. The 
turbulent Prandtl/Schmidt numbers and coefficients of expansion will then 
enter the expression. Further details can be found in Rodi (1980). 

6. Turbulent Prandtl/Schmidt numbers

Two options are available for the turbulent Prandtl/Schmidt numbers. The 
numbers can be given constant values or be calculated from the following 
formula. 

(A 15) 

where 



(A 16) 

is a buoyancy parameter. This formula was originally suggested by Launder 
(1975), where details about the derivation and numerical values of constants 
can be found, for the case of only one buoyancy affecting variable. Above it 
is extended to include several variables by simply adding the effects. It 
should be noted !hat this procedure has not been verified by a detailed 
derivation similar to the one done by Launder. 

7. Boundary conditions

For momentum, heat energy, salinity, and concentrations, boundary 
conditions can be applied in two different ways; either the flux of the 
variable or the value of the variable at the boundary is given. A shear stress 
at a water surface, for example, is a "flux condition", while the zero velocity 
at a bottom is a "value condition". 

The boundary conditions for k and i; are somewhat different. When a shear 
stress or a turbulence producing buoyancy flux is present at a boundary, k
and E are specified close to the boundary in relation to these fluxes. Details 
can be found in Svensson (1978) and Rodi (1980). Ifno shear or bouyancy 
flux is present, k and E are treated as if the boundary was a symmetry plane, 
i.e. a zero gradient condition is assumed.

8. Equation of state

The equation of state assumes a quadratic relationship between temperature 
and density and linear relationship for salinity and concentration, thus: 

p = p o (1-a i (T-T,)' +a,S+a,Cl +a,c, +a,C, +a,c.) (A 17) 

where p
0 

is a reference density, T, the temperature of maximum density 
and a1 - a, coefficients. In order to obtain maximum accuracy it may be 
needed to tune T,. and the coefficients. It is, for example, necessary to
choose T, with respect to the salinity interval under consideration.





APPENDIXB 

THE FINITE DIFFERENCE EQUATIONS FOR THE 
ONE-DIMENSIONAL TRANSIENT OPTION. 

I. Introduction

There are several ways of deriving the finite different form of differential 
equations. In this appendix they will be derived by integrating the 
differential equations over control volumes. The general outline of the 
technique follows from Spalding (1976) or Patankar (1980). 

2 The grid arrangement and the general differential equation 

All the differential equations given in Appendix A may be presented in the 
general form: 

(B 1) 

where � stands for pu, when x-direction momentum is considered, pcT 
when heat energy is considered, etc. The source term for the variable � is 
denoted by S

1 
and r

1 
is a transport coefficient defined by: 

(B 2) 

where cr ,JJ,I is the effective Prandtl/Sclunidt number for the variable �.
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This general equation is to be integrated over the control volume with index 
i, see Figure 1. From this figure it can also be seen that the vertical variation 
of horizontal area, Ar(z ), will be considered. This variation will be taken as 
stepwise, as illustrated. 



Time will be denoted by I, and when considering a control volume, U stands 
for up and D for down, along the time axis. N is the number of grid lines in 
the vertical direction, and NMl means N-1, NM2 means N-2, etc. 

2. Integration over a control volume

Equation (B I) is to be integrated over horizontal area, vertical distance and 
time. This will be done for the general control volume i. Thus: 

Dnix!> =�(r, ix!>)+s,]d1 dz dAr
Jl a1 az az 

(a) (b) (c) 

Integrate this equation term by term. 

A,(;) 
(b) f

i+ 1 

i-1 

D ,(,•½l
( 

a 
( a� )J f f - r, - dz dt dAr = 

u ,(i-½) az az 

Figure 2. Detai/ oj the eon/ro/ vo/umes.

A,(;) 

= f r - - f - I dAr-K( a�) ( a�) } 
u 

4i Bz i+½ 
4i Bz i-½ 

-

[( a�) ( a�) ] = 111 Arf
1 

- - Arr, -
Bz 1+½,1* Bz i-Y.,t* 

(B 3) 

(B4) 

(B 5) 

where t• is some time between U and D. To increase the numerical stability 
ofthe scheme, time leve! D will be used for 1• whenever possible. With this 
choice the numerical solution technique is of the fully implicit kind. 



In the above expression Ar(i + ½) and Ar(i-½) are used. The stepwise
specification of Ar is , however, discontinuous at these locations, and the
question then arises, which Ar should be used. To settle this, one has to look
into the physical significance of (B 5), see Figure 2.

The term (Arf
1 

8�) represents a loss (assume af > o) for control
az i-1/, az 

volume i at the lower boundary due to diffusive transport. It also represents
a gain for control volume i-1 at the upper boundary. lf there is no loss
associated with the bottom contact, we will require that all the flux leaving
control volume i shall enter control volume i-1. An example of such a
variable is heat energy, as it is well known that only a negligible part of the
vertical heat flux will be stored in the bottom sediments. The correct area at
i-½ is thus Ar(i-1), and with the same arguments Ar(i) will be the
appropriate area i+½. This area specification should be used for all
variables, which exhibit this "conservative" nature in contact with the
bottom . lf, on the other hand, the variable in question experiences losses in
contact with the bottom, it is clear from Figure 2 that the flux leaving
control volume i -½ is not the same as entering control volume i -I at the
upper boundary. Momentum is an example of such a "non-conservative"
variable. This because of the losses at the bottom due to friction. For all
"non-conservative" variables the most reasonable choice is Ar(i) for both
i+½ and i -½ when studying control volume i. This is the area
specification normally used for all hydrodynamical variables, while the heat
energy, salinity, and concentrations will normally be treated as
''conservative". 

These conclusions will now be introduced into (B 5) through the definitions:

{
Ar(i )r

1 
(i -½ )! fu:{i -½); if � is not" conservative"

T = -
Ar(i-l)f

1 
(i-½)! fu:(i- ½); if � is "conservative" 

With these expressions one may write (B 5) as.

h(,) 
(c) J 

() 

,(i+Y,) D 

f f S1
dt dz dAr = Ar(i)fu:(i)S

1
,.M 

,(i-1/,) u 

(B 6)

(B 7)

(B 8)

(B 9)

The source term will be divided into two parts, one of which contains the
variable itself. Thus:

(B 10)



With this definition (B 9) becomes: 

Ar(i)11z(i)i'lt(S(i)+ S'(i)j, 0) 

Collect terms (B 4), (B 8), and (B 11) and obtain: 

11z(i)Ar(i x� D (i)-�u (i)) 
= L\t[T.(� 0 (i+ 1)-� 0 (i))-T_ (� 0 (i)-� 0 (i-1))] 
+ Ar(i)11z(i )L\t[S(i) + S'(i)j, 0]

Which may be rearranged lo: 

� 0 (iXAr(i )11z(i) + L\t(T. + T_ )- Ar(i )11z(i)L\1S'(i)] 

(B Il) 

(B 12) 

+ � 0
(i + lX-L\tT.)+ �0

(i -lX-L\tT_)+ �u (iX-Ar(i)11z(i)) (B 13) 
-Ar(i)11z(i)L\1S(i) = 0

or 

where: 

A(i) = r. I Ar(i) 

B(i)= T_ I Ar(i) 

C(i) = � u (i)11z(i)! L\t + 11z(i)s(i) 

D(i) = 11z(i)/ L\t + (r. + r_); Ar(i )- 11z(i )s'(i) = 
= A(i)+ B(i)+ 11z(i)! L\t -11z(i)s'(i) 

(B 14) 

(B 15) 

(B 16) 

(B 17) 

(B 18) 

Equation (B 14) is in a form, which is easily solved using a tri-diagonal 
matrix algorithm. For a presentation of such an algorithm see for example 
Spalding (1976). 

3. Coefficients for control volumes at the boundaries

Background 

Close lo the boundaries the transport coefficients often vary steeply. Special 
attention must therefore be paid to the coefficients in these regions. In 
PROBE the coefficients are calculated with special wall functions, which 
are based on logarithmic and linear laws. 

In this section it will be shown how the coefficients are incorporated into the 
finite difference formulation. Two different cases may be distinguished, 
depending on if the value or the flux of � is prescribed. 



The value of 4> is prescribed 

For this boundary condition one only has to introduce the new boundary 
coefficients� 

B(2)= TB/ Ar(2) 

A(N) = TS I Ar(NMI) 

(B 19) 

(B 20) 

Where the TB and TS are transport coefficients at the bottom and surface 
respectively. 

The flux of 4> is prescribed 

For the surfäee: 

where y + is flux of ,j> per unit area and time. 
From (B21): 

Substitute from this for ,j> 
N 

in equation (B 14) with i= NMI 

(B 21) 

(B 22) 

D(NM1>!>
n

(NM1) = TS I Ar(N,1I1) 
[-y ,Ar(NMl)!TS +$

D
(NM1)]+ B(NMI>!> n(Nkf2)+C(NMI) (B 23)

which may be written as: 

D'(NM1}1i
0

(NM1)= A'(NMl}li 0 (N)+ B(NMI) 
,j>(NAf2)+ C'(N,\11}, 

where 

D'(N11fl) = D(N,lfl)-TS I Ar(NM!) 

C'(Nkfl) = C(NMl)-y,

A'(NM1)= 0.0 

(B 24) 

(B 25) 

(B 26) 

(B 27) 

This is the set of coefficients to be used when the flux of ,j> at the surface is 
prescribed. The expressions for the bottom boundary are analogue. 





APPENDIXC 

THE FINITE DIFFERENCE EQUATIONS FOR THE 

TWO-DIMENSIONAL STEADY OPTION. 

(From Nordblom (1997)). 



Before deriving the finite-difference equations, one has to decide the order 
in which the equations are solved. It is assumed here that the first equation 
solved at each new integration step is the horizontal momentum equation. 
Thereafter, the vertical velocity component is calculated from the continuity 
equation. Then, the heat equation, the turbulent kinetic energy equation and 
the dissipation rate equation are solved, one after the other. Thus, after the 
horizontal momentum equation has been solved and the vertical velocity 
component has been obtained from the continuity equation, the velocity 
field can be regarded as known when the remaining equation are solved. 
This fäet will be referred to below. 

While the numerical scheme used m PROBE for the one-dimensional 
transient case can be characterized as fully implicit, the finite-difference 
equations are here derived for the general case where the leve! between the 
fully explicit and the fully implicit scheme is expressed by a weighting 
factor. It is then easy to select a specific scheme, e.g. of the Crank­
Nicholson type or of the fully-implicit type, simply by adjusting the 
weighting factor. 

The starting point in the derivation is the general differential equation for 
two-dimensional parabolic steady flows, here written with all terms on the 
left 

-(u�)+-(w�)-- I'- -S=O

å å å ( å�) åx i)z i)z i)z 
(C 1) 

In this equation, when � = pu, we get the horizontal momentum equation

and when � =El,� = k and � = ö , we get the heat equation, the turbulent 

kinetic energy equation and the dissipation rate equation, respectively. S 
denotes the source term and I' denotes the vertical exchange coefficient, 
corresponding to the variable � . 

In the Cartesian coordinate system used here, the horizontal axis is denoted 
by x and the vertical axis by z. The calculation domain is divided into a
rectangular mesh and a part of this is shown in Figure 1 below. The 
horizontal distance between the grid cells ,1x is assumed to be constant 
while the vertical distance & can vary. 

N 

I\ 
0 �, Ip 

s L 
uu u D 

Figure 1. Apart oj the finite-difference mesh. 



Equation (C I) is to be integrated over the dashed grid cell shown in Figure 
I. The direction of flow is assumed to be from left to right. With reference
to Figure I, the letters U and D stands for Up and Down and are the limits
of integration in the horizontal direction, UU denotes the x-coordinate one
integration step upstream of x = U, the lower case letters s and n refers to
the z-coordinate of the lower and upper boundaries of the grid cell,
respectively, and are the limits of integration in the vertical direction, P
stands for the z-coordinate at the center of the dashed grid cell, while S and
N refers to the z-coordinate at the center of the adjacent grid cells below
(South) and above (North) of the grid cell considered. The arrows indicate
the actual location of the points where the velocities are calculated (the
vertical velocity is here arbitrary directed upward). The different terms in
the differential equation are divided into three groups which are integrated
separately. Group I is the horizontal convection term, group II is the vertical
convection and diffusion terms (handled together) and group III is the
source term.

Group I: The horizontal convection term. 

Wben performing the integration over the vertical extent of the grid cell, it 
is assumed that u1 is constant with z and equal to the center point value 

(u1) P. With this assumption, we get 

where the coefficients u P,D and u P,u denote the horizontal wind speeds in 

the cell walls at x = D and x = U, respectively. 

The coefficients u P.D and u P.u will be determined rn different ways 

depending on if 1 = pu or not. If 1 is any of the variables B, k or s , both 

uP.D and u
P
,u can be regarded as known since the horizontal wind speed is 

determined from the horizontal momentum equation before the other 
variables are solved. On the other hand, when 1 = pu , u 

P
.o is unknown and 

must be approximated. 

One way of approximating u P 
O 

is to set u P O 
equal to u P u where u P u is

' ' ' , 

known from the previous integration step. The error te1m following from 
this approximation can be determined by setting u P u = u P u + Llu , where 

. . 

i',u is the change in horizontal wind speed between x = U and x = D.

Inserting the relation u ,.o = u P.u + Llu in expression (C 2), we get 

Thus, the error introduced by replacing u
P
.D by u

r
,u is &Llu1

P
.o which is

equal to &Llupu
P D (since 1 = pu when the momentum equation is 

solved). 



A smaller error term can, however, be achieved if both ur,o and ur,u are 
replaced by the upstream values u r,u and ur,uu, respectively, To see this, 
we write ur,o and ur,u in terms of the upstream values and the change over 
the horizontal grid distance ,1x , according to 

Up,u = uP,UU + Li U1 
uP,D = uP,U + L\ u, 

If the horizontal grid distance is constant, the change in horizontal wind 
speed from x = U to x = D will be nearly the same as the change from
x = UU to x = U, r,e, L\u2 

se L\u
1 

= L\u , Inserting the relations 
u P,u = u P,uu + L\u and u P,o = u P,u + L\u in expression ( C 2) and recognizing

!hat L\u(1P ,D -1P,u) = pL\u(uP,o -uP ,u) = p(L\u)', we get

In this case, provided !hat L\u
1 
= L\u

2 
, the resulting error term is 

L\zp(L\ u)', Comparing the two error terms, it is seen that the error is 
reduced by the factor L\u I u P ,o which is a significant improvement since the 
change in u over the grid distance ,1x is only a small fraction of the 
absolute value ofu, i.e. L\u I uP ,D << l, 

If the coefficients uP,o and ur,u in expression (C 2)are replaced by the 
symbols C O and C

11
, respectively, and the error term above is dropped, we 

get the following final expression for the integrated horizontal convection 
term 

(C 3) 

where C O = uP ,u, Cu = uP ,uu if 1 = pu, and C0 = uP ,/J, Cu = uP,u,
otherwise, (When x = 0 and 1 = pu, we must set CD = Cu = uP,u, where 
ur u is the prescribed velocity at the upstream boundary,) 

Group II: The horizontal convection and diffusion terms, 

When performing the integration over the horizontal extent of the grid cell, 
it is assumed !hat all terms are constant with x and equal to a representative 
value at x = x' E [u, D], With this assumption, we get 

f f ! (w1)-!(r: yzdx = f (w1), -(r: ),, -((w1), -(r: ),)dx = 

= Llxl(w1 ),,,, -( r: J,,,. -((w1 ), , -( r: }.,. ) J



For convenience, the index x • is dropped here, but will be included later in
the derivation. The expression then lakes the following form 

(C 4)

The value and the gradient of f at the lower and the upper boundary of the
grid cell are now to be expressed in terms of fs , fp and fN . This will,
however, require knowledge of the variation of f with z which is, of
course, unknown since the variation of f in the x- and z-direction is the
outcome of the numerical solution. Instead, we must use approximate

relations for wn , (:)
"
, w, and (:)

' 
expressed in the grid point values

f s, fp and fN •

In Patankar (1980), several methods are discussed. The simplest approach to
the problem is "The Upwind Scheme" and the somewhat more advanced
methods are variants of "The Exponential Scheme". These schemes are
presented below. 

The Upwind Scheme:

In The Upwind Scheme, the value of f at a cell wall is replaced by the
upwind value and the gradient of f is calculated from a central difference
approximation. Using the FORTRAN operator MAX[ ] which retums the
greater of its arguments, the convective terms wnfn and w,f, can be
written in a compact form according to

w "�" = � P MAX[ w n ,0]-�NMAX[-w" ,o]
w,�, =�sMAX[w,,0]-�rMAX[-w,,0]

The above expressions will always assign the upwind value to f at a cell
wall, regardless of the flow direction.

The diffusive flux at the upper and lower cell walls is calculated from a
central difference approximation according to 

r"(:).
rn (fN -fp )= 

ZN -Zp 

r,(:} r,. (fp -fs)= 

Zp -z
8 

Introducing the variables DIF,, for
r,,

ZN - Zp

expression (C 4) takes the following form

and DIF, for



Llx[(MAX[w,,O]+DIF, +MAX[-w,,O]+DIF,)1p -
(MAX[- w,,,O]+ DIF,,)1N -(MAX[w,,O ]+ DIF.J1

s ] 

Setting A=MAX[-w,,,O]+DIF,, and B=MAX[w,,O]+DIF,, we get the 
final expression for the integrated convection and diffusion terms for The 
Upwind Scheme 

(C 5) 

The Exponential Scheme and variants: 

In The Exponential Scheme, an exact expression for the variation of 1 with 
z is derived for an idealized convection-diffusion flow; a one-dimensional 
stationary flow without source terms and with constant density p and a 
constant diffusion coefficient I' . The differential equation for this situation 
read 

81 8'1 8'1 w 81 
w--I'--=0 or ------= 0 

8z &' &' I' 8z 

Since this is a linear ordinary differential equation with constant 
coefficients, the equation is easily solved by analytical methods. (Note that 
not only I' is constant here, w is also constant in a one-dimensional flow 
with constant density, from continuity reasons.) The solution in the interval 
[z

P
,z

N
], subject to the boundary conditions 1(z

p ) =1
p 

and 1(zN ) =1N

becomes 

By differentiating this function, we get 

(C 7) 

The functional relationships for the value and the gradient of 1 in the 
interval [zs, z P] will be analogous, all indices N are just replaced by P and 
Pby S. 

Since the actual flow is two-dimensional with a non-zero source te1m (in 
general) and a variable diffusion coefficient, we do not expect the analytical 
functions to be exact for the flow considered. From these functions we can, 



however, probably do the best assumption possible regarding the value and 
the gradient of cp at the cell walls. 

Thus, we insert the functions (C 6) and (C 7) for a z-coordinate in the 
in lerval [ze ,z N] and the corresponding functions for a z-coordinate in the 
interval [z5 ,zp ], in expression (C 4). After some manipulations, we get 

where Pn and P, are the Peclet numbers al the upper and lower walls of the 
grid cell, respectively. The Peclet numbers express the relative strength of 
convection and diffusion at the cell walls and are defined according to 

p = p
11

w
n
(z

,v 
-Z

p
) p11 w11 

n 
f'n DJF,,

where, as before, the variables DIF� and DIF, stand for 

, respectively. 

By factoring out ,Pp , c/JN and 'Ps in expression (C 8), we get 

[ 

W
1 

W. 
Lix (w + ' + ' ,;. -n MP exp(P,lp,)-1 exp(P,/p,)-1 

( Wn \A. ( w, u JJ'f'N - w_, + J'f's exp(P"/p,, )-1 exp(P,lp,) I 

and 

The above expression can be simplified lo the same cxpression as (C 5) by 
defining the coefficients A and B according to 

A = 
w,, =DIF P,,lpn 

exp(P,, I Pn )-1 "exp(P" / p,,)-1 

w B= w + ·'' exp( P, I p,) - I
DIF,(P, I p, + P, i P, · ),

exp(P, / p,)-·l 

With these definitions, the integrated convection and diffusion terms for The 
Exponential Scheme become 



Following Patankar (1980), A and B will now be approximated by 
polynomial functions. There are two reasons for doing that; the polynomials 
are somewhat less expensive to compute than the exponentials, and they are 
well-defined and equal to the limit value of A and B at the point PI p = 0. 
From these approximate functions, we get "The Hybrid Scheme" and "The 
Power-law Scheme", (Patankar, 1980). 

In The Hybrid Scheme, A and B are approximated by piecewise linear 
functions according to 

B = DIF, -MAX[P, I p,,I + 
P, �

P, ,0] = MAX[ w,,DIF, + �' ,0]

In The Power-law Scheme, A and B are approximated by a 5th-degree 
polynomial for PI p E [-10,10] and linear functions outside this interval. 
The definitions read 

A = D!Fn -(MAX[(l-0.1-IPn I P,,I)' ,0 j+ MAX[-Pn I P,, 
,o])= 

= MAX[D!Fn (I -0.1 • lwn I DJFn lJ' ,0] + MAX[-Wn ,0] 

B = DIF, • (MAX[(! - 0.1- IF,/ p ,Il' ,0 j+ MAX[P, I P, ,0]) =

= MAX[DIF, (1-0.1-lw, I DIF,l)' ,o ]+ MAX[w,,o] 

(C 9) 

(Cl0) 

To sum up, it is recognized that the difference between the schemes 
presented, lies in the coefficients A and B. In The Upwind Scheme, A and B 
have the simplest form. The Exponential Scheme and its variants are 
somewhat more complicated, hut are believed to perform better than The 
Upwind Scheme. As is pointed out in Patankar (1980), for high lateral flow 
(!arge values of the Peclet number), the gradient of 1 will become very 
small, making the diffusive flux negligible. For this case, The Upwind 
Scheme has the drawback that it overestimates the diffusion since it always 
calculates the diffusion from a central difference approximation. In the other 
schemes where the coefficients A and B are functions of the Peclet number, 
the influence from diffusion at !arge values of the Peclet number is reduced 
automatically. It is true that all schemes will produce the same result when 
the grid distance is made small enough since a finer grid will also reduce the 
Peclet number. From a computational point of view, we should, however, 
choose a method that produces reasonable results also with a course grid. 
Thus, the scheme to be suggested here is The Hybrid Scheme or The Power­
law Scheme. It is probably quite arbitrary which one is chosen. Following 
the recommendation in Patankar (l 980), The Power-law Scheme will be 
used, withA and B from equation (C 9) and equation (C 10). 

Now, introducing the index x' E [U,D] that was dropped earlier, the 
expression (C 5) (valid for all schemes) become 



(C Il) 

The value of </J at x = x •, will now be expressed in terms of the old value 
from the previous integration step at x = U and the new value from the 
current integration step at x = D according to the linear relation 
</i x' = (I - f)<Pu + f</i 

D 
. When / = 0, we get the so called fully explicit 

scheme while / = 0.5 and /=I lead to the Crank-Nicholson scheme and 
the fully implicit scheme, respectively. 

Inserting the relation, </Jx' = (I- f)<Pu + f<P
o 

in expression (C 11), we get the 
following final expression for the integrated convection/diffusion term 

Llx[(w, -w, +A+B)[(l- f)<PPu + f</ip 0 ]-. . 
A[(I- f)<PN ,u + f<PN ,D]-B[(l- f)<Ps .u + f<Ps,oll 

Group III: The source term. 

(C 12) 

When performing the integration over the vertical extent of the grid cell, it 
is assumed that the source term S is constant with z and equal to center point 
value S P . In the integration over the horizontal extent of the grid cell, it is 
assumed that S P is constant with x and equal to a representative value s

i
'., 

at x = x' E [u,D]. Also, to prepare for situations where the source term isa 
function of </J, we use a linear expression for this dependence according to 
S P =SJ+ SIP<Ji . , where SI and SIP are coefficients. With these 

P,x 

assumptions, we get 

f f Sdzdx = .1z f S Pdx = LlxLlzS P,x' =Llx.1z(SI + SIP<Ji P.x')
X ' X 

Inserting the relation, </i x' = (I- f)<Pu + f<Po 
in the expression above, we get 

Llx.1z( SJ + SIP [ (I -f)</i p u + f</i I' D]) . . (C13)

Now, adding together expression (C 3), (C 12) and (C 13), we arrive at the 
final finite-difference equation for two-dimensional parabolic flows. The 
equation read 

[: c/J +(wn -w., +A+B)f-LlzSIPJ }P.D = Af</JN ,D +Bf</is,D + 

[: Cu</JP.u -(w,, -w., + A + B)(I- f)</i,.,u + A(I- f)<PN.u + 

B(I-f)<Ps ,u 
+Llz(SI +SIP(I-f)</i P u 

)]
or 

(C 14) 



where 

D'=[!c
D

+(wn
-w,+A+B)f-LizSJPfl A'=Af, B'=Bf and 

C'=[! CuPP,U -(wn -w, +A+B)(I- f)P P ,U +A(l-f)P N,U + 

B(l- f)P
s,u +Liz(SJ +SJP(I-f)PP,u)]

Calculation of the vertical velocity: 

The vertical velocity at the cell boundaries is obtained from the continuity 
equation applied to each grid cell after the horizontal momentum equation 
(giving the horizontal velocities) has been solved, With reference to the 
dashed grid cell in Figure (I) and assuming constant density, the continuity 
equation gives 

Solving for the vertical velocity at the upper wall of the grid cell, w" , we 
get 

(C 15) 

At a solid wall, the vertical velocity is known and equal to zero. Assuming a 
solid wall at the lower boundary, the vertical velocity at the upper wall of 
each grid cell in the finite-difference mesh can be determined by iterating 
equation. (C 15) through all the grid cells from bottom to top. 



APPENDIXD 

LISTING OF THE CODE 



PROGRAM PROBE97 
C 
C******************************************************************** 

C CODE NAME: PROBE97 
C "'"'"'******* 

C 
C PC-VERSION: 
C "'"'"'******** 

C 
C DEVELOPED BY: URBAN SVENSSON 
C ************* 

C 
C DOCUMENTATION: 
C ************** 

C 
C COMMENTS: 
C "'"'***"'"'"'* 

C 
C********************************************************************* 

C********************** MAIN PROGRAM********************************* 

C 
INCLUDE 'comp97.inc' 

C 
DIMENSION ISTORE(NSTORE,NPM) 

C 
C-------------------------------------------------------------------

CHAPTER 1 1 l l 1 1 DATA l 1 1 l I l l l l 1 1 l
C 

CALL DFAULT 
CALL CASE(l) 
IF(NPROBE.EQ.l) GOTO 200 
CALL STORE('W',IPROBE,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 

100 IPROBE=IPROBE+l 
CALL CASE(l) 
CALL STORE('W' ,IPROBE,NSTORE,NPM,ISTORE,NSTOR l ,NSTOR2) 
IF(IPROBE.LT.NPROBE) GOTO 100 
CALL STORE('R' ,l,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 
IPROBE=l 

C--------------------------------------------------------------------

CHAPTER 2 2 2 2 2 2 GRID AND GEOMETRY 2 2 2 2 2 2 2 2 2 
C 
200 CONTINUE 
C-----VERTICAL GRID DISTRIBUTION 
C 

CALL GRID 
C 
C-----AREA VESUS DEPTH 
C 

IF(INDARE.NE.4) CALL AREAD 
C 
C-------------------------------------------------------------------

CHAPTER 3 3 3 3 3 3 STARTING VALUES 3 3 3 3 3 3 3 3 
C 
C-----INITIALISE DEPENDENT V ARIABLES 

IF(ISTPR.NE. l) GOTO 300 
DO 32 J=l,NJM 
DO 33 1=2,NM 1 

IF(Z(l).LE.ZSTl (J)) F(l,J)= VSTl (J) 



IF(Z(I).GT.ZSTl(J)) 

1 F(l,J)=YSTl(J)+(Z(l)-ZSTl(J))*(VST2(J)-VSTl (J)) 

2 /(ZST2(J)-ZST 1 (J)+ TINY) 

IF(Z(l).GE.ZST2(J)) F(l,J)=YST2(J) 
33 CONTINUE 
32 CONTINUE 

300 CONTINUE 
C-----INITIALISE OTHER V ARIABLES 
C 

DO 30 l=l,N 

RH O(l)=RH O REF*( I. -C 1 RHO*(F(l,JTE)-TREF)*(F(l,JTE)-TREF)+ 

1 C2RH O*F(l,JS )+C3RH O*F(l,J C 1 )+C4 RHO*F(I,J C2 )+ 

2C5RHO*F(l,JC3)+C6RHO*F(l,JC4)) 
F(l,JTE)=F(l,JH)/RHO(I)/CPHEAT 

EMU(l)=EMULAM 
IF(F(l,JK).LE.FKMIN.OR.F(l,JD).LE.FDMIN) THEN 
F(I,JK)=FKMIN 
F(l,JD)=FDMIN 
ENDIF 
IF(ITURBM.EQ.4) GOTO 31 
F(I,JEMU)=RHO(l)*CD*F(l,JK)*F(I,JK)/(F(l,JD)+ TINY)+EMTMIN 
IF(ITURBM.EQ. l) F(l,JEMU)=EMUCON 

31 CONTINUE 
30 CONTINUE 

C 

C 

IF(ITURBM.EQ. l .OR.ITURBM.EQ.4) IPRSC=l 

CALL OUTPUT 

CALL CASE(4) 

IF(NPROBE.EQ.l) GOTO 302 
IF(IPROBE.EQ.NPROBE) GOTO 301 
CALL STORE('W' ,IPROBE,NSTORE,NPM,ISTORE,NSTORl ,NSTOR2) 

IPROBE=IPROBE+ 1 
CALL STORE('R' ,IPROBE,NSTORE,NPM,ISTORE,NSTORl ,NSTOR2) 
GOTO 200 

301 CONTINUE 
CALL STORE('W' ,IPROBE,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 
CALL STORE('R',l,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 

IPROBE=l 
302 CONTINUE 

C--------------------------------------------------------------------

CHAPTER 4 4 4 4 4 4 STEP CONTROL 4 4 4 4 4 4 4 4 4 4 
C 

ITIMEl=l 
ITIME2=2 
NSTEP=INT(TFRAC(I)) 
DT=TFRAC(2) 
NUMB=l 

ISTPDT=l 
DO 40 l=l,NPM 

IF(NSTPDT(l).EQ. l) THEN 
INDEXP=I 
GOTO 41 

ENDIF 
40 CONTINUE 
41 CONTINUE 

C 
400 CONTINUE 

IF(IPROBE.NE.INDEXP) GOTO 402 



IF(NUMB.LE.NS1EP) GOTO 401 

ITIMEl=ITIMEI +2 

ITIME2=ITIME2+2 

NUMB=l 
NSTEP=INT(TFRAC(ITIMEI)) 

401 CONTINUE 

NUMB=NUMB+l 
C 

402 CONTINUE 
DT=TFRAC(ITIME2) /NSTPDT(IPROBE) 
TIME=TU+DT 

C------------------------------------ ------------------------

CHA PTER 5 5 5 TIMEDEPENDENT BOUNDARY CONDffiONS 5 5 5 5 5 5 5 
C 

C 

DO 50 J=l,NF 
IF(.NOT.SOLV AR(J)) GOTO 500 
IF(ITRHZ(J).NE.2) GOTO 501 
IF(TIME.LE.V4HZ(J)) VALUE= 

F V 1HZ(J) +(V2HZ(J)-V IHZ(J))*TIMl'/V 4HZ(J) 

IF(TIME.GT.V4HZ(J)) VALDE= 

F V2HZ(J)+ V3HZ(J)*SIN(2. *Pl*(TIME-V 4HZ(J))N5HZ(J))

IF(IKBHZ(J) .EQ.l) F(N,J)=VALUE 
IF(IKBHZ(J).EQ.2) FLUXHZ(J)=V ALUE 

501 IF(ITRLZ(J).NE.2) GOTO 502 
IF(TIME.LE.V4LZ(J)) VALUE= 

F V I LZ(J)+(V2LZ(J)-V 1 LZ(J) )*TIMEN 4 LZ(J) 
IF(TIME.GT.V4LZ(J)) V ALUE= 

F V2LZ(J)+ V3LZ(J)*SIN(2. *Pl*(TIME-V 4LZ(J))N5LZ(J)) 

IF(IKBLZ(J).EQ.I) F(l,J)=VALUE 
IF(IKBLZ(J).EQ.2) FLUXLZ(J)=V ALUE 

502 CONTINUE 
500 CONTINUE 
50 CONTINUE 

C 
CALL CASE (2) 

C 
C-----IN- AND OUTFLOWS
C --CALCULA TE VOLUME FLUX ALONG Z-AXIS
C

TESTQ=ABS(QINFL(NMl))+ABS(QOUTFL(NMI)) 
IF(TESTQ.GT.TINY.AND.MOVE) THEN 
WRl1E(6,*)'WARNING IN- OR OUT-FLOW IN CELL NMI' 
ENDIF 
DO 5 I 1=2,NMI 

QZ(l)=QZ(l-1 )+QINFL(l)-QOUTFL(I)
51 CONTINUE 

QZ(N)=0. 

QSUR F=QZ(NMI ) -PREEV A * AREA(NM I) 
IF(MOVE) CALL SURF 
IF(ABS(QSURF).GT.TINY.AND .. NOT.MOVE)THEN 

WRl1E(6, *)'WARNING IN-AND OUTFLOW NOT IN BALANCE. 
IQSURF=' ,QSURF,'M3/S' 
ENDIF 

C--------------------------------------------------------------------

CHAPTER 6 6 6 6 6 6 ADVANCE 6 6 6 6 6 6 6 6 6 6 6 6 
C 

CALL COMP 
C 



C--------------------------------------------------------------------

CHAPTER 7 7 7 7 7 7 COMPLETE 7 7 7 7 7 7 7 7 7 7 7 7 

C 

C-----PROPERTIES 

DO 70 l=l,N 

RHO(l)=RHOREF*( 1.-C IRHO*(F(I,JTE)-TREF)*(F(l,JTE)-TREF)+ 

IC2RHO*F(I,JS)+C3RHO*F(l,JCl)+C4RHO*F(I,JC2)+ 

2C5RHO*F(I,JC3)+C6RHO*F(I,JC4)) 

F(l,JTE)=F(l,JH)/RHO(l)/CPHEA T 

IF(ITURBM.EQ. l.OR.ITURBM.EQ.4) GOTO 71 

IF(F(l,JK).LE.FKMIN.OR.F(l,JD).LE.FDMIN)THEN 

F(l,JK)=FKMIN 

F(l,JD)=FDMIN 

ENDIF 

F(l,JEMU)=CD*RHO(l)*F(l,JK)*F(l,JK)/(F(l,JD)+ TINY)+EMTMIN 

71 CONTINUE 

70 CONTINUE 

C 

C 

TU=TIME 

IF(ISTPDT.EQ. l)ISTEP=ISTEP+ I 

C--------------------------------------------------------------------

CHAPTER 8 8 8 8 PRINT 8 8 8 8 8 8 8 8 8 8 

C 

C 

IF(ISTPDT.EQ.NSTPDT(IPROBE))THEN 

CALL CASE(4) 

CALL OUTPUT 

ENDIF 

C---------------------------------------------------------------------

CHAPTER 9 9 9 9 DECIDE 9 9 9 9 9 9 9 9 9 9 
C 

IF(ISTEP.L T.LSTEP.AND.TU.L T. TLASTJ GOTO 90 I 

IF(IPROBE.EQ.NPROBE.AND.ISTPDT.EQ.NSTPDT(IPROBE)) THEN 
CALL STORE('W',IPROBE,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 

GOTO900 

ENDIF 

901 CONTINUE 

C 

IF(NPROBE.EQ.l) GOTO 902 

IF(ISTPDT.LT.NSTPDT(IPROBE)) THEN 

ISTPDT =ISTPDT + I 

GOTO402 

ELSE 

ENDIF 

ISTPDT=I 

CALL STORE('W' ,IPROBE,NSTORE,NPM,ISTORE,NSTORI ,NSTOR2) 

IPROBE=IPROBE+ I 

IF(IPROBE.GT.NPROBE) IPROBE=I 

CALL STORE('R',IPROBE,NSTORE,NPM,ISTORE,NSTORl,NSTOR2) 
902 CONTINUE 

GOTO400 

900 CONTINUE 

C 

DO 90 IPROBE=l,NPROBE 

CALL STORE('R' ,IPROBE,NSTORE,NPM,ISTORE,NSTORI ,NSTOR2) 

IFIN=2 

CALL OUTPUT 

90 CONTINUE 



C 
STOP 

END 

C 
C----------- END MAIN PROGRAM 
C 

C 
C********************************************************************

SUBROUTINE STORE(CHAR,INDEX,NSTRE,NPRM,ISTORE,NSTRl,NSTR2) 

C********************************************************************

C 

C 

C 

DIMENSION ISTORE(NSTRE,NPRM) 
CHARACTER*l CHAR

COMMON IA1(9804) 

COMMON/COM2/IA2(107) 

NlPl=NSTRl+l 

IF(CHAR.EQ.'R') GOTO 1000 

C----WRITE 
DO 100 l=l,NSTRI 

100 ISTORE(l,INDEX)=IA I (I) 
DO 102 l=NI Pl,NSTRE 

102 ISTORE(l,INDEX)=IA2(1-NSTRI) 

RETURN 
C 
1000 CONTINUE 

C----READ 
DO 101 l=l,NSTRI 

10 I JA 1 (l)=ISTORE(l,INDEX) 

DO 103 l=NIPl,NSTRE 
103 IA2(1-NSTRl)=ISTORE(l,INDEX) 

RETURN 
END 

C 
C 
C *******************************************************************

SUBROUTINE GRID 
C *******************************************************************

C 

C 

C 

INCLUDE 'comp97.inc' 

IF(ISTEP.EQ.0) THEN 
NMl=N-1 

NM2=N-2 

ENDIF 

IF(IGRID.NE.l) GOTO 100 

C-----UNIFORM GRID 
DZl=ZDIM/FLOA T(NM2) 

DO 101=2,NMl 
DZCELL(l)=DZ I 

10 CONTINUE 

100 IF(IGRID.NE.2) GOTO 101 
C-----EXPANDING GRID FROM LOW Z 

DZCELL(2 )=ZDIM *( CEXPG- I .  )/(CEXPG • *NM2- l . )
DO 11 1=3,NMI 

DZCELL(l)=CEXPG*DZCELL(l-1)
Il CONTINUE 



101 IF(IGRID.NE.3) GOTO 102 

C-----EXPANDING GRJD FROM HIGH Z 

DZCELL(NM l)=ZDIM *( CEXPG-1. )/( CEXPG* *NM2-1.) 

DO 12 I=NM2,2,-1 

DZCELL(I)=CEXPG*DZCELL(I+ 1) 

12 CONTINUE 

102 CONTINUE 

C-----IGRID=4 INDJCA TES THAT DZCELL IS GIVEN IN CASE 

C-----CALCULA TE Z-V ALUES 

Z(l)=0. 

Z(2)=0.5*DZCELL(2) 
DO 13 I=3,NM1 

Z(I)=Z(I-1 )+0.S*(DZCELL(I-l)+DZCELL(I)) 

13 CONTINUE 

Z(N)=ZDIM 

C-----CALCULATE OTHER CONTROL VOLUME PARAMETERS 

ZBOUND(l)=0. 

DO 14 I=2,NM1 

DZ(I)=Z(I + l )-Z(I-l) 

RECDZ(I)= l ./DZ(I) 

ZBOUND(I)=ZBOUND(I-1 )+DZCELL(I) 

14 CONTINUE 

RETURN 

END 

C 

C 

SUBROUTINE AREAD 
C********************************************************************* 

C 

INCLUDE 'comp97.inc' 

C 

IF(INDARE.NE. I) GOTO 200 

C-----UNIFORM AREA-DISTRIBUTION 

C 

DO JO l=l,N 

AREA(l)=AREAHZ 

10 CONTINUE 

AREA(l)=0. 

RETURN 

C 

C-----LINEAR AND NON-LINEAR DISTRIBUTIONS 

C 

200 CONTINUE 

IF(INDARE.EQ.2) CEXPA=l. 

DO 201=2,NMl 

AREA(l)=(Z(l)/Z(N))**CEXPA • AREA HZ 

20 CONTINUE 

AREA(l)=0. 

C 

C 

AREA(NM l)=AREAHZ 

AREA(N)=AREAHZ 

RETURN 

END 

C********************************************************************** 

SUBROUTINE SURF 
C********************************************************************** 

C 



INCLUDE 'comp97.inc' 

C 

C 

C 

C 

LOGICAL STOGEO(NPM),FLAGDZ(NPM) 

DIMENSION UUZSR(NPM,NIM),UUDZR(NPM,NIM),UUZBR(NPM,NIM) 

DATA STOGEO/NPM*.TRUE./ 

IF(ISTEP.EQ.0) THEN 

IF(STOGEO(IPROBE)) THEN 

DO 10 I=l,N 

UUZSR(IPROBE,l)=Z(I) 

UUDZR(IPROBE,l)=DZCELL(I) 

UUZBR(IPROBE,I)=ZBOUND(I) 

10 CONTINUE 
FLAGDZ(IPROBE)=.FALSE. 

STOGEO(IPROBE)=.FALSE. 

ENDIF 

DO 12 I=l,N 

ZSREF(I)=UUZSR(IPROBE,I) 

DZCREF(I)=UUDZR(IPROBE,I) 

ZBREF(I)=UUZBR(IPROBE,I) 

12 CONTINUE 

C 

C 

ZDIM=ZSSTRT 

DO Il I=2,N-l 

IF(ZBREF(I).GE.ZDIM)THEN 

NTEST=I 

GOTO 13 

ENDIF 

NTEST=I+l 

Il CONTINUE 

13 CONTINUE 

IF(NTEST.GE.N)THEN 

WRITE(6,'(A,IP2El2.3)')'ZMAX, S.L. =',ZBREF(N-1),ZDIM 

STOP' SURFACE TOO HIGH IN SURF' 

ENDIF 

N=NTEST+I 

NMl=N-1 

NM2=N-2 

DZCELL(NMl)=ZDIM-ZBREF(NM2) 

IF(FLAGDZ(IPROBE))THEN 

N=N-1 

NMl=N-1 

NM2=N-2 

DZCELL(NM I )=ZDIM-ZBREF(NM2) 

ENDIF 

ZBOUND(NMI )=ZDIM 

Z(N)=ZDIM 

Z(NM I )=ZDIM-0.5 *DZCELL(NM l) 
REC DZ(NM l )= l ./(Z(N)-Z(NM2)) 

ENDIF 

C-----END OF ISTEP=0 

C-------CALCULATE MOVEMENT OF FREE SURFACE 

C 

DEL TAZ=QSURF*DT/AREA(NMI) 

ZNEW=ZDIM+DELTAZ 

IF(QSURF.LT.0.) 00 TO 30 



C------A RISING SURFACE 

C 

ZLIMIT=ZBREF(NM 1)+0.2 *DZCREF(N) 

IF(ZNEW.LT.ZLIMITI GO TO 40 
C -- CHANGE NUMBER OF ACTIVE CELLS. 

N=N+l 
NMl=N-1 

NM2=N-2 

DZCELL(NM l)=(QSURF*DT-(ZBREF(NM2)-ZBOUND(NM2))* AREA(NM2)) 

1/AREA(NMl) 

ZDIM=ZBREF(NM2)+ DZCELL(NM 1) 

Z(NM2)=ZSREF(NM2) 

ZBOUND(NM2)=ZBREF(NM2) 

DZCELL(NM2)=DZCREF(NM2) 

Z(NMl)=ZDIM-0.S*DZCELL(NMl) 

RECDZ(NM2)=1.i(Z(NM1)-Z(N-3)) 
C -- PROPERTIES FOR NEW ACTIVE CELL 

DO 20 JLOC= l ,NFP2 

F(N,JLOC)=F(NM2,JLOC) 

F(NM l ,JLOC)=F(NM2,JLOC) 

20CONTINUE 

GO TO50 

30CONTINUE 

C-------A SINKING SURFACE 

C 

ZLIMIT=ZBREF(NM2)+0.2*DZCREF(NMI) 

IF(ZNEW.GT.ZLIMIT) GO TO 40 

C ---CHANGE NUMBER OF ACTIVE CELLS. 

VOLl=DZCELL(NMl)*AREA(NMl) 

VOL2=DZCELL(NM2)*AREA(NM2) 

N=N-1 

NMl=N-1 

NM2=N-2 

DZCELL(NM l)=DZCREF(NM 1 )+(ZDIM-ZBREF(NM 1 )) 
1 *AREA(N)/AREA(NMl)+QSURF*DT/AREA(NMI) 

ZDIM=ZBREF(NM2)+DZCELL(NM I) 

Z(N+l)=ZSREF(N+ 1) 
DZCELL(N)=DZCREF(N) 

ZBOUND(N)=ZBREF(N) 

RECDZ(N)= 1./(ZSREF(N+ 1 )-ZSREF(NM 1 )) 

C--- PROPERTIES FOR CELL NMl(MIXING IN PROPORTION TO VOLUMES) 

VOL3=-DT*QSURF+DZCELL(NM l)* AREA(NM 1) 
DO 31 JLOC=l,NFP2 

F(NM l ,JLOC)=(F(N,JLOC)*VOL I +F(NM 1,JLOC)*VOL2)NOL3 

F(N,JLOC)=F(NM l ,JLOC) 

F(N+ l ,JLOC)=0. 

31 CONTINUE 

GO TO50 

40CONTINUE 

C------NUMBER OF ACTIVE CELLS NOT CHANGED. 

C 

ZDIM=ZNEW 

IF(DELTAZ.GT.0.) THEN 

DO 41 JLOC=l,NFP2 

F(NM 1,JLOC)=(F(NM l ,JLOC)*DZCELL(NM l)+ 

1 F(NM2,JLOC)*DELTAZ)/(DZCELL(NMl)+DELTAZ) 

41 CONTINUE 
ENDIF 

DZCELL(NM l)=DZCELL(NM 1 )+DELT AZ 



50CONTINUE 
C-----CHANGES COMMON TO ALL SITUATIONS. 
C 

C 
C 
C 

C 

C 

ZBOUND(NMl)=ZDIM 
RECDZ(NMl)=l./(ZDIM-ZSREF(NM2)) 
Z(N)=ZDIM 
Z(NMl)=ZDIM-0.5*DZCELL(NMI) 
IF(ISTEP.EQ.LSTEP-1 )THEN 
IF(DZCELL(NMl).GT.DZCREF(NM I ))THEN 
FLAGDZ(IPROBE)=.TRUE. 

ELSE 
FLAGDZ(IPROBE)=,FALSE, 

ENDIF 
ENDIF 
RETURN 
END 

SUBROUTINE PEA 

INCLUDE 'comp97.inc' 

DIMENSION A(NIM),B(NIM),C(NIM),D(NIM) 
C-----PEA-ALGORITM 
C 

CALL BOUND( I ,TLZ) 
J=JRHOV 
CALL BOUND(),TLZ) 
CALL BOUND(N,1lIZ) 

C ·-A ANDB 
DO 10 1=2,NM2 
A(l)=DIFREF(I) 
B(l+l)=A(I) 

JO CONTINUE 
NLIMIT=NMl 
IF(MOVE) NLIMIT=NM2 
DO 11 1=2,NLIMIT 
A(l)=A(l)+AMAX!(0.,-QZ(l))/AREA(I) 
B(I+ I )=B(I+ I )+AMAX!(0.,QZ(I))/ AREA(!+ I) 

Il CONTINUE 
B(2)=TLZ 
A(NMl)=THZ 

C --C ANDD 
DO 121=2,NMl 
DCDT=DZCELL(l)/DT 
D(l)=A(l)+B(l)+DCDT 
C(l)=F(l,JRHOV)*DCDT-DZCELL(l)*DPDY(IJ 

12 CONTINUE 
DO 13 1=2,NLIMIT 
D(l)=D(I)+(QZ(l)-QZ(I-1) )/ AREA(l)+QOUTFL(I)/ AREA(!) 
C(l)=C(l)+ PHIIN(l,J)*QINFL(l)/ AREA(!) 

13 CONTINUE 
IF(IKBLZ(J).EQ.l) GOTO 100 
B(2)=0. 
C(2)=C(2)+FLUXLZ(J) 
D(2)=D(2J-TLZ 



100 IF(IKBHZ(J).EQ.l) GOTO 101 
A(NMl)=0. 

C(NM l)=C(NM 1 )-FL UXHZ(J) 
D(NMl)=D(NMl)-THZ 

101 CONTINUE 

DO 14 1=2,NMl 

DAF=A(I)*F(I+ l ,JRHOV)+B(l)*F(l-1,JRHOV)+C(I) 
SI(l)=Sl(I)+CORI/D(l)*DAF 

SIP(l)=-CORl**2*DZCELL(l)/D(I) 
14 CONTINUE 

C 
J=JRHOU 

C 

C 
C 

RETURN 
END 

C********************************************************************** 

SUBROUTINE DFAULT 
C********************************************************************** 

C 

INCLUDE 'comp97.inc' 
C 

C ---DATA NOT TOBE ALTEREDBY USERS 

NF=NJM 
NFP2=NJMP2 

IDIMF=NIM 

TU=0. 
!TEST=!

IPROBE=l
DO 1 IJK=l,NIM

SI(IJK)=0.
SIP(IJK)=0.
DIF(IJK)=0.
DIFREF(IJK)=0.

1 CONTINUE
TINY=l.E-15
GREAT=I.El5
Pl=3.1416

ISTEP=0

IFIN=l
C************************************************************* 

C*****GROUP 0. TYPE OF FLOW 
C ITYPEF=INDEX FOR TYPE OF FLOW 
C =l GIVES 1-D TRANSIENT FLOW (DEFAULD 
C =2 GIVES 2-D PARABOLIC FLOW 

ITYPEF=I 
C************************************************************* 

C .. ***GROUP I. GRID IN SPACE AND TIME 
C-----N=NUMBER OF GRID CELLS PLUS 2. MAXIMUM=NIM. 

N=NIM 
TIME=0. 

TLAST=I.ElO 
LSTEP=IO 

C-----GRID DISTRIBUTION IN SPACE 

C-----IGRID=INDEX FOR GRID 
C =I GIVES UNIFORM GRID 
C =2 GIVES EXPANDING GRID FROM LOW Z 
C =3 GIVES EXPANDING GRID FROM HIGH Z 



C =4 INDICA TES THAT THE GRID IS SPECIFIED IN CASE 
C ----SEE MANUAL FOR DETAILS OF THE EXPANDING GRID 

IGRID=l 
CEXPG=l.1 
DO Il IJK=l,NIM 
DZCELL(IJK)=0. 

11 CONTINUE 
C-----TIME STEP VARIATION 
C A VARIABLE TIME STEP IS SPECIFIED BY THE TFRAC FIELD 
C TFRAC/10.,L,200.,2.,16*0./ GIVES A TIME STEP OF LOS 
C THE FIRST 10 STEPS FOLLOWED BY 200 OF 2.0 S.

C A CONSTANT TIME STEP IS OBTAINED BY SPECIFYING TFRAC(2) 
C INCASE. 

DO 12 IJK=I.20 
TI•'RAC(IJK)=0. 

12CONTINUE 
TFRAC(l )=l.E8 

C*************************************************

C*****GROUP 2, PHYSICAL DIMENSIONS
XDIM=LEI0 
YDIM=l.EI0 
ZDIM=l.EIO 

C-----VERTJCAL AREA DISTRIBUTION 
C 
C-----INDARE=INDEX FOR AREA-DISTRIBUTION 
C----- =I INDICATES UNIFORM AREA 
C----- =2 INDICA TES LINEAR DISTRIBUTION 
C--·-- =3 JNDICA TES NON-L!NEAR DISTRB.,SEE MANUAL 
C----- =4 DISTR, SPECIFIED IN CASE 

INDARE=I 
AREAHZ=l.O 
CEXPA=2. 

C************************************************** 

C*****GROUP 3. DEPENDENT V ARIABLES
C F(l,JRHOU)=X-DIRECTION MOt.ffiNTUM 
C F(l,JRHOV)=Y-DIRECTION MOMENTUM 
C F(l,JH)=HEA T-ENERGY 
C F(l,JS)=SALINITY 
C F(l,JK)=TURBULENT KINETIC ENERGY 
C F(l,JD)=DISSIPA TION OF TURBULENT KJNETIC ENERGY 
C F(l,JCl)=CONCENTRATION NO.l 
C F(l,JC2)=CONCENTRATION NO.2 

C F(l,JC3)=CONCENTRA TION NO.3 
C F(l,JC4)=CONCENTRATION NO.4 
C F(I, I 0+(NJM-!O))=ADDITIONAL V ARJABLES ACTIV ATED FOR NJM> 10. 
C F(l,JEMU)=DYNAMICAL EDDY VISCOSITY 
C F(l,JTE)=TEMPERATURE 

JRHOU=I 
JRHOV=2 
JH=3 
JS=4 
JK=5 
JD=6 
JC1=7 
JC2=8 
JC3=9 
JC4=!0 
DO 31 IJK=l,NJM 
SOLVAR(IJK)=.FALSE. 



31 CONTINUE 

JEMU=NJMPl 

JTE=NJMP2 
C************************************************** 

c••••*GROUP 4. PROPERTIES 

CPHEAT=4190. 

RHOREF=lOO0. 

EMULAM=0.0013 
DO 41 IJK=l,NJM 

PRL(IJK)=l. 
41 CONTINUE 

PRL(3)=9.5 

PRL( 4 )= 1000. 

AGRAV=9.81 
C**************************************************** 

C•••••GROUP 5. EQUATION OF STATE 
C-----RHO=RHOREF*( 1.-C 1 RHO*(T-TREF)**2+C2RHO*S 
C +C3RHO* JC 1 +C4RHO*JC2+CSRHO*JC3+C6RHO* JC4)

CIRHO=7.18E-6 
C2RHO=8.E-4 

TREF=3.98 

C3RHO=0. 

C4RHO=0. 

CSRHO=0. 
C6RHO=0. 

C***************************************************** 

c•••••GROUP 6. TURBULENCE MODEL 
C-----ITURBM=INDEX FOR TURBULENCE MOD EL 

C----- =l GIVES CONSTANT VALUE (=EMUCON) 
C----- =2 GIVES K-E MOD EL 

C----- =3 GIVES K-E MOD EL WITH BUOY ANCY EFFECTS 
C----- =4 INDICATES THAT F(I,JEMU) IS SPECIFIED IN CASE 

C-------IPRSC=INDEX FOR TURBULENT PRANDTL/SCHMITH NUMBER 

C USED FOR HEA T,SALINITY AND CONCENTRA TIONS 

C =l INDICATES THAT CONSTANT VALUES ,GIVEN BELOW, 
C ARE USED. 

C =2 INDICA TES THA T THE NUMBERS ARE AFFECTED 

C BY BUOY ANCY.NOTE:SHOULD ONLY BE USED WITH 

C ITURBM EQUAL TO 2 OR 3. 

IPRSC=2 

ITURBM=3 
EMUCON=0. 

DO 61 IJK=l,NJM 
PR T(IJK)= 1. 

61 CONTINUE 

PRT(S)=l.4 

PRT(6)=1.3 

C-----CONSTANTS IN TURBULENCE MODEL. SHOULD NOT BE CHANGED. 

CD=0.09 

RTCD=0.3 

CD75=0.l64 

Cl=l.44 

C2=1.92 

C3=0.8 

ClPR=0.63 

C2PR=0.13 

C3PR=0.063 
C************************************************************* 

c••••*GROUP 7. SOURCE TERMS 



C 
C----COR!OLIS PARAMETER 

CORl=LE-4 
C-----PRESSURE GRADIENTS 
C INDPX=INDEX FOR PRESSURE GRADIENTS IN X-DIRECTION 
C =I GNES PRESCRIBED CONSTANT PRESSURE 
C GRADIENTS ,DPDxP. 
C =2 GIVES PRESCRIBED MASSFLOW,RHOUP.ONLY 
C RELEVANT FOR STEADY STATE PROBLEMS. 
C =3 GIVES PRESSURE GRADIENT DEVELOPMENT ACCORDING TO 

C HORIZONTAL EXTENT OF WA
T

ERBODY.ONL Y RELEVANT TO 
C LAKES AND RESERVOIRS. 
C =4 INDICA TES THAT THE PRESSURE GRADIENTS ARE TO BE 
C READ FROM SEPARA TE FILE AS A TIME SERIES. 
C =-1.-2,-3 OR -4 AS ABOVE,BUT WITH BUOY ANCY DAMPING 

C OF PRESSURE GRADIENTS(EFFECT OF TIL TED TERMOCLINE). 
C INDPY=SAME FOR Y-DIRECTION 

Rl-lOUP=O. 
RHOVP=0. 
DPDXP=0. 
DPDYP=0. 
PFILT=l. 
INDPX=l 
INDPY=l 

C-----IN- AND OU'IFLOWS. 
C-----SEE MANUAL FOR INSTRUCTIONS ON USE 

DO 71 !JK=l,NIM 
QZ(IJK)=O. 
QINFL(IJK)=O. 
QOUTFL(IJK)=0. 
00 72 IKJ=l,NJM 
PHIIN(IJK,IKJ)=0. 

72CONTINUE 
71 CONTINUE 

C-----SHORT-WA VE RADIA TION 
C ASSUMED TO PENETRATE THE WATER BODY. 
C FLXRAD=SHORT-W A VE RADIATION. 
C RADFRA=FRACTION ASSUMED TO BE A BOUNDARY FLUX 
C BETA=EXTINTION COEFFICIENT 

FLXRAD=0.0 
RADFRA=0.4 

BETA=0.l 

C*****GROUP 8. INITIAL DATA 
DO 81 !JK=l,NIM 
DPDX(IJK)=0. 
DPDY(IJK)=0. 
fW(IJK)=0. 
DO 82 IKJ= 1,NJMP2 
F(IJK,IKJ)=0. 

82CONTINUE 
81 CONTINUE 

C-----INITIALISE DEPENDENT V ARIABLES 
C ISTPR=INDEX FOR STARTING PROFILES 
C =I PROFILES ARE SPECIFIED WITH VSTl(I-NJM)-ZST2(1-NJM) 
C SEE MANUAL. 

C =2 PROFILES ARE SPECIFIED IN CASE WITHOUT THE USE 
C OF VST1(1-NJM)-ZST2(1-NJM). 
C --NOTE:DEFAULT VALDE FOR ALL V ARIABLES IS 0.0. 



ISTPR=l 

DO 83 IJK=l,NJM 

VSTI (IJK)=0. 

VST2(1JK)=0. 

ZSTl(IJK)=0. 
ZST2(1JK)=0. 

83 CONTINUE 
C**************************************************************** 

C*****GROUP 9. BOUNDARY CONDITIONS 

C 

C-----ITYPEH=INDEX FOR TYPE OF BOUNDARY AT HIGH Z 
C =I GIVES SOLID WALL(STATIONARY OR MOVING) 
C =2 GIVES SYMMETRY LINE 
C ITYPEL=SAME FOR LOW Z BOUNDARY 
C 

C-----IKBHZ(J)=INDEX FOR KIND OF BOUNDARY CONDITION FOR 
C VARIABLE J AT HIGH Z BOUNDARY 
C =I GIVES PRESCRIBED V ALUE 
C =2 GIVES PRESCRIBED FLUX 
C IKBLZ(J)=SAME FOR LOW Z BOUNDARY 

C-----ITRHZ(J)=INDEX FOR TIMEDEPENDENCE OF BOUNDARY FOR 
C VARIABLE J 
C =I GIVES STATIONARY CONDITIONS 
C =2 GIVES TRANSIENT CONDITIONS SPECIFIED FROM CASE-
C SUBROUTINE.SEE MANUAL FOR INSTRUCTIONS ON USE. 
C =3 GIVES TRANSIENT CONDITIONS READ FROM FILE 
C ITRLZ(J)=SAME FOR LOW Z BOUNDARY 

C-----IKBOT(J)=INDEX FOR KIND OF BEHA VIOR AT BOTTOM FOR V ARIABLE J 
C ONL Y RELEVANT FOR CASES WITH VERTICAL AREA-DISTRIB. 
C =I GIVES "CONSERVATIVE" CONDITION.SEE MANUAL. 
C =2 GIVES "NON-CONSERVATIVE" CONDITION.SEE MANUAL. 

C-----SPECIFICATION FOR STATIONARY BOUNDARY CONDITIONS 

C 

C-----SPECIFICA TION FOR TRANSIENT CONDITIONS(ITRHZ OR ITRLZ=2).SEE MANUAL 

C 

C ----SPECIFICA TION OF WALL-FKN PARAMETERS. 
C 

ITYPEH=l 

ITYPEL=l 

DO 91 IJK=l,NJM 
IKBHZ(IJK)=2 

IKBLZ(IJK)=2 
ITRHZ(IJK)= I 

ITRLZ(IJK)= I 

IKBOT(IJK)=l 

FLUXHZ(IJK)=0. 

FLUXLZ(IJK)=0. 

VIHZ(IJK)=0. 

V2HZ(IJK)=0. 

V3HZ(IJK)=0. 

V4HZ(IJK)=0. 

V5HZ(IJK)=0. 
VI LZ(IJK)=0. 

V2LZ(IJK)=0. 

V3LZ(IJK)=0. 

V4LZ(IJK)=0. 

V5LZ(IJK)=0. 

STANTN(IJK)=I.E-3 
91 CONTINUE 



IKBOT(l)=2 

IKBOT(2)=2 

IKBOT(5)=2 

IKBOT(6)=2 

ST ANTN (I)= I. 

ST ANTN (2 )= I. 
STANTN(3)=0.05 

STANTN(5)=1. 

STANTN(6)=1. 
CAPPA=0.4 

C3B=9. 
ROULHZ=0. 

ROULLZ=0. 
C**********************************************************************

C*****GROUP 10. LIMITS AND NUMBERS

EM1MIN= l .E-6 
FKMIN=l.E-15 
FDMIN=l.E-15 

TAUMIN=l.E-3 
KINDAV=l 

C**********************************************************************

C*****GROUP 11. PRINT OUT
C--------PRINT CONTROL 
C --SET ITPLOT=2 FOR CROSS-STREAM PLOT, =I FOR NO PLOT 

ITPLOT=2 

C --SET NSTAT,NPROF,NPLOT TO NUMBER OF STEPS BETWEEN OUTPUT OF 

C STATION V ALUES,PROFILES AND CROSS-STREAM PLOTS RESPECTIVEL Y 
NSTAT=lO 

NPROF=50 

NPLOT=IOO 
C --SET INIOUT .FALSE. FOR NO INITIAL OUTPUT 

INIOUT=.TRUE. 
C 
C---- SELECT PROFILES TO BE PRINTED AND PLOTTED. 

C-----U,V,T,S,1C,2C,3C,4C,K,E,EMU,SIGM,DPDX,DPDY,W,PRSCN,RIF,N,UW,VW 
C 1,2,3,4, 5, 6, 7, 8,9,10,11, 12, 13, 14,15, 16,17,18,19,20 
C-----PRINTED 

C-----PLOTTED 

DO l l l !JK=l,20 

PRPROF(UK)=.FALSE 

PLPROF(IJK)=.FALSE. 

111 CONTINUE 
C 

C-----PARTICLE TRACKING.SEE MANUAL. 

C-----INDPT=INDEX FOR PARTICLE TRACKING 
C =0 GNES NO TRACKING 

C =1-4 ONE TO FOUR PARTICLES ARE TRACKED 
C 

INDPT=0 

ILEVEL(l )=0 

ILEVEL(2)=0 

ILEVEL(3)=0 

ILEVEL( 4 )=0 

IPSA VE= I 000 
C**************************************************************

C*****GROUP 12.LINKED RUNS.
DO 121 IJK=l,NPM 

NSTPDT(IJK)= I 
121 CONTINUE 



NPROBE=l 
C*************************************************************** 

c•••••GROUP 13. MOVING FREE SURFACE. 
MOVE=.FALSE. 
ZSSTRT=0. 
PREEVA=0. 

C*************************************************************** 

RETURN 
END 

C 
C 

C*************************************************************** 

SUBROUTINE PHYS 
C*************************************************************** 

C 

INCLUDE 'comp97.inc' 
C 
C----------------------------------------------------------------------------

CHAPTER A A A A EDDY VISCOSITY AND PRANDTIJSCHMIDT NUMBERS A A A 
C 

IF(J.NE.0) GOTO 14 
C 

IF(ITURBM.EQ.l.OR.ITURBM.EQ.4) GOTO 16 
C ---EDDY VISCOSITY 

DO 10 1=2,NM 1 
F(I,JEMU)=CD*RHO(l)*F(l,JK)*F(l,JK)/F(I,JD)+EMTMIN 

10 CONTINUE 
C 

C-----PRANDTL/SCHMIDT NUMBER 
IF(IPRSC.NE.2) GOTO 16 
DO 15 1=2,NM 1 
DTDZ=(F(I+ 1,JTE)-F(l-1 ,JTE)+ TINY)*RECDZ(I) 
DSDZ=(F(I+ l,JS)-F(l-1,JS)+ TINY)*RECDZ(I) 
DClDZ=(F(I+ l ,JCl)-F(l-1,JC l)+ TINY)*RECDZ(I) 
DC2DZ=(F(I + l ,JC2)-F(l- l ,JC2)+ TINY)*RECDZ(I) 
DC3DZ=(F(I+ l ,JC3)-F(l-l ,JC3 )+ TINY)*RECDZ(I) 
DC4DZ=(F(I+ I ,JC4 )-F(l-l ,JC4 )+ TINY)*RECDZ(I) 
BPR=-(F(I,JK)*F(l,JK))/(F(l,JD)*F(l,JD))* AGRA V* 
1 (-2.*ClRHO*(F(I,JTE)-TREF)*DTDZ 
2+C2RHO*DSDZ+C3RHO*DC1DZ+C4RHO*DC2DZ 
3 +C5RHO*DC3DZ+C6RHO*DC4DZ) 
IF(BPR.LT.TINY) BPR=TINY 
PRSCNU(l)=(C IPR+C2PR *IJPR)/( l .+C3PR *BPR) 

15 CONTINUE 
16 CONTINUE 

C ---REFERENCE DIFF-VALUES AT CELL-BOUNDARIES 
DO 13 1=2,NM2 
IF(KINDA V.EQ.2) THEN 

C ---HARMONIC MEAN 
EMU(l)=2. *(Z(I+ 1 )-Z(I))/(DZCELL(I)/F(l,JEMU) 

1 +DZCELL(I+l)/F(l+l,JEMU)) 
ELSE 

C ---ARITHMETIC MEAN 
EMU(l)=0.5*(F(I+ l ,JEMU)*DZCELL(l)+F(l,JEMU)*DZCELL(I+ 1 )) 
1/(Z(I+ I )-Z(l))+EMULAM 
ENDIF 
DIFREF(l)=EMU(I)/(0.5*(RHO(l)+RHO(I+ 1 ))) 

1/(Z(I + 1)-Z(I)) 
13 CONTINUE 



RETURN 
14 CONTINUE 

C 
C---····-·----------·----·-·--------•-·················-----·-·-·----

CHAPTER B B B B B B CHOOSEVARIABLEB B B B B B B B B 
C 

C 

IF(J.EQJRHOU) GOTO 300 
IF(J.EQ.JRHOV) GOTO 400 
IF(J.EQ.JH.OR.J.EQ.JS) GOTO 500 
IF(J.EQ.JK) GOTO 600 
IF(J.EQ.JD) GOTO 700 
IF(J.GE.JCI) GOTO 500 

C---·-----····-···-·-··•··---···---------------------·--······-----·· 

CHAPTER C C C C C C U-MOMENTUM EQUA TJON C C C C C C C C 
C 
300 CON

T

INUE 
C 

DO 301=2,NM! 
DIF(l)=DIFREF(I) 
SI(l)=0. 
SIP(l)=0.O 

30 CONTINUE 
C 

IF(ABS(CORJ).GT.TINY.AND.SOLVAR(JRHOV)) CALL PEA 
360 CONTINUE 
C-----PRESSURE GRADIENT 

IF(ABS(INDPX).NE.IJ GOTO 3!0 
DO 3 l I 1=2,NMI 

311 DPDX(l)=DPDXP 
GOTO340 

310 CONTINUE 
C-----CALCULA TE MASS FLOW 

XMFL=O.0 
DO 311=2,NMI 
XMFL=XMFL+DZCELL(l)*F(l,JRHOU) 

31 CONTINUE 
IF(ABS(INDPXJ.NE.2) GOTO 320 
DO 32 1=2,NMI 
DPDX(l)=DPDX(l)+PFILT*(XMFL-RHOUP) 

32 CONTINUE 
GOTO340 

320 IF(ABS(INDPXJNE.3) GOTO 330 
FACTPR=Pl*Pl*PFILPPFlLT*DT*XMfl. *AGRAVIXDIM/XDIM 
DO 33 1=2,NMl 
DPDX(l)=DPDX(l)+FACTPR 

33 CONTINUE 
330 !F(ABS(!NDPX).NE.4) GOTO 340 
C-----READ DPDX FROM SEPARATE FILE 
340 CONTINUE 

IF(INDPX.GT.0J GOTO 350 

C ---EFFECT OF STRATIFICATION 
DDIFF=AMAX1(0.05,-(RHO(NMl)-RHO(2))) 
DO 34 1=2,NMl 
DCORR=(-(RHO(IJ-RHO(2))+0.05)/DDIFF 
IF(DCORR.GT.l.) DCORR=I. 
JF(DCORR.L T.0.01) DCORR=0.Ol 

34 DPDX(l)=DPDX(IJ*DCORR 
350 CONTINUE 



DO 35 1=2,NM 1 

Sl(l)=Sl(I)-D PDX(I) 

35 CONTINUE 

C 

CALL CASE(3) 

RETURN 

C-------------------------------------------------- ------------------

CHAPTER D D D D D D V-MOMENTUM EQUATION D D D D D D D D 
C 

400 CONTINUE 

DO 40 1=2,NM 1 

DIF(l)=DIFREF(I) 

Sl(l)=-CORI*F(I,JRHOU) 

SIP(l)=0.0 

40 CONTINUE 

C 

C-----PRESSURE GRADIENT 

IF(ABS(INDPY).NE.l) GOTO 410 

00 4111=2,NMI 

4 I I DPDY(l)=DPDYP 

GOTO 440 

410 CONTINUE 

C --CALCULA TE MASS FLOW 

YMFL=0.0 

00411=2,NMI 

YMFL= YMFL+ DZCELL(l)*F(I,JRH OV) 

41 CONTINUE 

IF(ABS(INDPY).NE.2) GOTO 420 

00 42 1=2,NM I 

DPDY(l)=DPDY(I)+PFILT*(YMFL-RHOVP) 

42 CONTINUE 

GOTO 440 
420 IF(ABS(INDPY).NE.3) GOTO 430 

FACTPR=Pl*PI*PFIL T*PFIL T*DT*YMFL * AGRA V /YDIM/YDIM 

00 431=2,NMI 

DPDY(l)=DPDY(l)+FACTPR 

43 CONTINUE 

430 IF(ABS(INDPY).NE.4) GOTO 440 

C-----READ DPDY FROM SEPARATE FILE 

440 CONTINUE 

IF(INDPY.GT.0) GOTO 450 

C ---EFFECT OF STRATIFICATION 

DDIFF=AMAXl(0.05,-(RHO(NMl)-RHO(2))) 

00 44 1=2,NMI 

DCORR=(-(RHO(I)-RHO(2))+0.05)/DDIFF 

IF(DCORR.GT. l.) DCORR= I. 

IF(DCORR.LT.0.01) DCORR=0.01 

44 DPDY(l)=DPDY(l)*DCORR 

450 CONTINUE 

DO 45 1=2,NM I 

Sl(l)=Sl(l)-D PDY (I) 
45 CONTINUE 

C 

CALL CASE(3) 

RETURN 

C--------------------------------------------------------------------

CHAPTER E E SOURCES AND DIFFUSION COEFFICIENTS FOR JH,JS,JCI-JC4 

C 

500 CONTINUE 



DO 571=2,NMI 
S1(1)=0. 
SIP(I)=0, 

57 CONTINUE 
C 
C ---EFFECTIVE PRANDTL NUMBER 

DO501=2,NMI 
PRTJ=PRT(J) 
IF(IPRSC,EQ.2) PRTJ=PRSCNU(I) 
PREF(l)=(F(l,JEMU)+EMULAM)/(F(I,JEMU)/PRTJ+EMULAM/PRL(J)) 

50 CONTINUE 
PREF(NMI )=PREF(NM2) 

C 
C ··-DIFFUSION VALUES 

DO 51 l=2,NM2 
PREFJ=0.5*(PREF(I+ 1 )+PREF(l)) 
DIF(l)=DIFREF(l)/PREFJ 

51 CONTINUE 
C 

IF(JNE.JKOR,FLXRAD.GT.TINY) GOTO 56 
C ···SHORT-WAVERADIATION 

DO 52 1=2,NMI 
SHIG=EXP(-BETA*(WIM•ZBOUND(I))) 
SLOW=AREA(l• l )IAREA(l)*EXP(·BETA *(ZDIM•ZBOUND(l• l))) 
SI(l)=·(l .-RADFRA)*FLXRAD*(SHIG-SLOW)/DZCELL(I) 

52 CONTINUE 
Sl(NMIJ=Sl(NMl )·RADFRA *FLXRADIDZCELL(NM 1) 

56 CONTINUE 
C 

C 

CALL CASE(3) 
RETURN 

C······················-············································-

CHAPTER F F F F F F TURBULENT KINETIC ENERGY F F F F F F 
C 
600 CON11NUE 

DO 60 l=3,NM2 
BUO(l)=0. 
FJK=F(l,JK) 
FJD=F(I.JD) 

C 

DUDZ=(F(I+ I ,JRHOU)-F{l• l ,JRHOU)+ TINY)*RECDZ(I)/RHO(I) 
IF (ITYPEF.EQ. l) THEN 
D VD7,=(F(I+ I ,JRHOV)•F(l• l ,JRHOV)+TINY)* RECDZ(l)IRHO(I) 

GRADSQ(l)=DUDZ*DUDZ+DVDZ*DVDZ 
ELSE 
DWDZ=(FW(l)-FW(l• I ))JDZCELL(I) 
GRADSQ(l)=DUDZ*DUDZ+2. *DWDZ*DWDZ 
ENDIF 

C ··BUOY ANCY PARAMETERS 
DTDZ=(F(I + l ,JTE)·F(l• I ,JTE)+TINY)*RECDZ(l) 
DSDZ=(F(I+ l,JS)·F(l• l ,JS)+ TINY)*RECDZ(I) 
DC I DZ=(F(I+ I ,JCI )·F(l• l ,JCI )+TINY)*RECDZ(l) 
DC2DZ=(F(I+ I ,JC2)-F(l· l ,JC2)+TINY)*RECDZ(I) 
DC3DZ=(F(I+ l ,JC3)·F(l• l ,JC3)+ TINY)*RECDZ(l) 
DC4DZ=(F(l+ 1,JC4)-F(l· 1,JC4 )+TINY)*RECDZ(l) 
IF(IPRSC.EQ.2) GOTO 602 
B UO(l)=AGRA V*(•2, *CIRHO*(F(l,JTE)-TREF) 
I *DTDZ/PRT(JH)+C2RHO*DSDZ/PRT(JS)+C3RHO*DCI DZ/PRT(JCI) 



SJ(l)=F(l,JEMU)*(Cl *GRADSQ(I)+C3*BUO(l))*FJD/FJK/RHO(I) 
SIP(l)=-C2*FJD/FJK 
DIF(l)=DIFREF(I)/PRT(JD) 

70 CONTINUE 
C 
C-----D IS PRESCRIBED NEAR BOUNDARIES 
C --AT LOW Z 

C 

DIF(2)=DIFREF(2)/PRT(JD) 
Sl(2)=FACTLZ** l .5*CD75/(CAPPA *Z(2))*GREA T 
IF(F(2,JK).L T.(FKMIN+ TINY))Sl(2)=FDMIN*GREA T 
IF(ITYPEL.EQ.2) SI(2)=F(3,JD)*GREAT 

SIP(2)=-GREAT 

C --AT HIGH Z 
ZREF=ZDIM-Z(NMI) 
SI(NM l)=FACTHZ** l .5*CD75/(CAPPA *ZREF)*GREA T 
IF(F(NM l ,JK).L T.(FKMIN+ TINY))Sl(NMl)=FDMIN*GREAT 
IF(ITYPEH.EQ.2) SJ(NM l)=F(NM2,JD)*GREA T 
SJP(NM l )=-GREA T 
CALL CASE(3) 
RETURN 

C ------------------------------------------------------------

END 

C 
C 
C***************************************************************** 

SUBROUTINE COMP 
C****************************************************************** 

C 
INCLUDE 'comp97.inc' 

C 
C 

C 

C 

C 

DIMENSION A(NIM),B(NIM),C(NIM),D(NIM),FID(NJP2NI) 
REAL CUP,CDOWN,TERM,DCDT 

EQUIVALENCE(FlD(l),F(l,l)) 

DOUBLE PRECISION A,B,C,D 

C--------------------------------------------------------------------

CHAPTER A A A A CALCULATE URUP, URUPUP AND FW A A A A A A 
C 

J=O 

CALL PHYS 

C 
IF (ITYPEF.EQ.2) THEN 

C STORE X-DIRECTJON MOMENTUM ONE AND TWO INTEGRATION STEPS UP 
C ONLY RELEVANT FOR 2-D PARABOLICFLOW 

C 

DO 1=2,NMl 
URUPUP(l)=URUP(I) 
URUP(l)=FlD(I) 

IF (ISTEP.EQ.0) URUPUP(l)=URUP(I) 
ENDDO 
ENDIF 

DO 480 J=l,NF 
C 

IF (ITYPEF.EQ.2.AND.J.EQ.2) THEN 
C CALCULATE VERTICAL VELOCITY FROM CONTINUITY EQUATJON 



2 +C4RHO*DC2DZ/PRT(JC2)+C5RHO*DC3DZ/PRT(JC3) 
3 +C6RHO*DC4DZ/PRT(JC4)) 
GOTO601 

602 BUO(l)= AGRAV/PRSCNU(l)*(-2.*CIRHO•(F(l,JTE)-TREF) 
l*DTDZ+C2RHO*D SDZ+C3RHO*DCIDZ 
2 +C4RHO*DC2DZ+C5RHO*DC3DZ+C6RHO*DC4DZ) 

60 I CON'11NUE 
C 

C ···SOURCE TERMS AND DlfFUSION 
SI(I)=F(l,JEMU)*(GRADSQ(IJ+BUO(l))/RHO(I) 
SIP(l)=-FJD/FJK 
DIF(l)=DIFREF(l)/PRT(JKJ 

60 CONTlNU E 
C 
C-----K IS PRESCRIBED NEAR BOUND ARIES 
C --ATLOWZ 

C 

ZREF=Z(2) 
FACTST=(ABS(FLUXLZ(JRHOU)+ TINY)** 1.5 
I +ABS(FLUXLZ(JRHOVJ+ TINY)** 1.5)/RHOREFu I .5/CD7 5 
FACTBU=CAPPA *ZREF*AGRA V/CD75*( 
I FLUXLZ(J H)*2. *C I RHO*(F(2,JTE)-TREF)IRHOREF /CPH EA T 
2 -FLUXLZ(JSJ*C2RHO-FLUXLZ(JCl)*C3RHO 
3 -FLUXLZ(JC2)*C4RHO-FLUXLZ(JC3)*C5RHO-FLUXLZ(JC4)*C6RHO) 
IF(FACTBU.LT.TIN Y**2) FACTBU=TINY**2 
FACILZ=(FACTST+FACTBU)**.67 
IF(FACILZ.LT.FKMIN)FACTLZ=FKMIN 
SIP(2)=-GRE A T 
S1(2)=FACTLZ*GR EAT 
IF(ITYPEL.EQ.2) S1(2)=F(3,JK)*GREAT 
DIF(2)=DIFREF(2)/PRT(JK) 

C --ATHIGH Z 
ZREF=ZDIM-Z(NM 1) 
COEFKS=CD75 

C 

FACTS T =(ABS(FLUXHZ(JRHOU)+TINY)** t.5 
1 +ABS(FLUXHZ(JRHOVJ+TINY)**l.5J/RHOREF**l.5/COEFKS 
FACIBU=CAPPA *ZREF* AGRA V/CD75*( 
l FLUXHZ(JH)*2. *CIRHO*(F(NM I ,JTE)-TREF)/RHOREF/CPHEAT
2 -FLUXHZ(JS)*C2RHO-FLUXHZ(JCl)*C3RHO
3 -FLUXHZ(IC2J*C4RHO-FLUXHZ(JC3)*C5RHO-FLUXHZ(JC4)*C6RHO)
IF(FACTBU.LT.TINY**2) FACTBU=TINY**2
FACTllZ=(FACTST +FACTBU)**.67
IF(l'ACTHZ.LT.FKMIN)FACTHZ=FKMIN
Sl(NMl)=FACTIIZ*GREAT
lF(TfYPEH.EQ.2) Sl(NM I )=F(NM2,JK)*GREAT
S IP(NM I )=-GREA T
CALL CASE(3)
RETURN

C--···················•··•·····••···························•···-----
CHAPTER G G G G G G DISSIPATIONOFTURBULENCEG G G G G G 
C 
700 CONTINUE 

DO 70 1=3,N M2 
FJK=F(l,JK) 

C 

IF(FJK.L T.FKMIN) FJK=FKMJN 
FJD=F(l,JD) 

C ---SOURCE TERMS AND DIFFUSION 



C ONL Y RELEVANT FOR 2-D PARABOLIC FLOW 
C PRESCRIBED ZERO VERTICAL VELOCITY AT TIIE LOWER BOUNDARY 
C FW(l) IS THE VERTICAL VELOCITY ATTIIE LOWER BOUNDARY 
C FW(I) IS TIIE VERTICAL VELOCITY AT TIIE UPPER WALL OF CELL I 

FW(l)=0. 

C 

DO1=2,NM1 

FW (l)=FW (1-1 )+(UR UP(l)-Fl D(I) )*DZCELL(l)/(DT*RHO(I)) 
ENDDO 

ENDIF 

C--------------------------------------------------------------------

CHAPTER B B B B B 1-D ARRAY B B B B B B B B B B B B 
C 

C 

IF(.NOT.SOLV AR(J)) GOTO 480 

IDJ=IDIMF*(J-1) 

llJ=l+IDJ 

12J=2+IDJ 

INMlJ=NMl+IDJ 

INJ=N+IDJ 

C--------------------------------------------------------------------

CHAPTER C C C C C PHYSICS C C C C C C C C C C C C C 

C 

CALL PHYS 

THZ=0.0 

TLZ=0.0 

IF(ITYPEH.NE.2) CALL BOUND(N,THZ) 
IF(ITYPEL.NE.2) CALL BOUND(l,TLZ) 

IF(ITEST.EQ.1) GOTO 450 

WRITE(6,45 l) J,(DIF(l),1=2,NMI) 

WRITE(6,452) (Sl(l),1=2,NMI) 

WRITE(6,453) (SIP(l),1=2,NMl) 

451 FORMAT(24H COMP SOL VE TESTS FOR J=,13/8H DIF(l)=/(3X,IP6El l.3)) 

452 FORMAT(7H Sl(l)=/(3X,IP6EI 1.3)) 

453 FORMAT(8H SIP(l)=/(3X, 1P6EI 1.3)) 

450 CONTINUE 

C 
C--------------------------------------------------------------------

CHAPTER D D D D D COEFFICIENTS D D D D D D D D D D D 
C 

IF (ITYPEF.EQ.1) TIIEN 
C 1-D TRANSIENT FLOW 

C-----A'S AND B'S 

DO1=2,NM2 

A(l)=DIF(I) 

B(l+l)=A(I) 

IF(IKBOT(J).EQ.1) B(I+ 1 )=A(I)* AREA(l)/AREA(I+ 1) 

ENDDO 

NLIMIT=NMl 

IF(MOVE) NLIMIT=NM2 

DO 339 1=2,NLIMIT 

A(l)=A(l)+AMAX 1 (0., -QZ(I) )/ AREA(!) 

B(I+ 1 )=B(I+ 1 )+AMAXI (0.,QZ(I))/ AREA(!+ I) 

339 CONTINUE 

B(2)=TLZ 

A(NMl)=THZ 
C-----C'S AND D'S 

DO 485 1=2,NM 1 

IJ=l+IDJ 



DCDT=DZCELL(l)IDT 
D(l)=A(l)+B(l)+DCDT-DZCELL(IJ*SIP(I) 

485 C(l)=FID(IJ)*DCDT +DZCELL(l)*Sl(I) 
DO 487 1=2,NL!MIT 
D(l)=D(l)+ (QZ(l)-QZ(l- l) )/ AREA(I)+QOUTPL(I)/ AREA(!) 
C(l)=C(I)+PHIIN(l,J)*QINFL(l)/AREA(l) 

487 CONTINUE 
IF(IKBLZ(J).EQ. l) GOTO 486 
B(2)=0.0 
C(2)=C(2)+FLUXLZ(J) 
D(2)=D(2)-TLZ 

486 IF(IKBHZ (J),EQ.IJ GOTO491 
A(NMI)=0,0 
C(NMl)=C(NMl)-FLUXHZ(J} 
D(NMl)=D(NMl)-THZ 

491 CON'l1NUE 
C 

ELSEIF (ffYPEF.EQ.2) THEN 
C 2-D PARABOLIC FLOW 
C-----A'S AND B'S 

DOl=2.NM2 
C POWER-LAW SC HEME 

A(l)=MAX(0.,DIF(l)*(I .-0. l * ABS(FW(l)/DJF(I)))•• 5.) 
I +MAX(0.,-FW(I)) 
B(I+ l)=A(I)+f<W(I) 
ENDDO 

C-----B(2) AND A(NMI) 
B(2)=TLZ 
A(NMl)=THZ 
IF (JKBLZ(J).EQ.2) B(2)=0. 
IF (IKBHZ(J),EQ.2) A(NMl)=0. 

C-----C'S AND D'S 
DO1=2,NM! 

C 

IJ=I+I DJ 
CDOWN=FID(I)/RHO(l) 
CUP=URUP(l)/RHO(l) 
IF (J,EQJRHO U) CUP.�URUPUP(l)/RHO(I) 
DCDT=DZCELL(I)/DT 
IBRM=FW(l)-f<W(l-1 )+A(l)+B(l) 
D(l)=DCDT*C DOWN+ 1ERM-DZCELL(l)*SIP(l) 
C(l)=DCDT*CUP*FID(IJ)+DZC ELL(l)*Sl(I) 
ENDDO 
IF(IKBLZ(J).EQ,2) C(2)=C(2)+FLUXLZ(J) 
IF(IKBHZ{J).EQ.2) C(2)=C(2),l'LUXHZ(J) 
ENDIF 

IF(ITEST.EQ. l) GOTO 464 
WRI1E(6,405) (A(l)J=2,NMI) 
WRITE(6,406) (B(l),1=2,NMl) 
WRITE(6,407) (C(l),1=2,NMl) 
WRl1E(6,408) (D(l),1=2,NMl) 

405 FORMAT(6H A(l)=/(3X,!P6El 1.3)) 
406 FORMAT(6H B(l)=/(3X,1P6El 1.3)) 
407 FORMAT(6H C(l)=/(3X,1P6El l.3)) 
408 FORMAT(6H D(l)=/(3X,IP6El l.3)) 

C 
C-------------------------------·-··----------------------------·-·-· 

CHAP1ERE E E E E SOLVEFORNEWF\SE E E E E E E E E 
C 



464 C(2)=(B(2)*FJD(IIJ)+C(2))/D(2) 
D(2)=A(2)/D(2) 
DO 465 1=3,NM I 
T=l ./(D(l)-B(l)*D(l-1)) 
D(l)=A(l)*T 

465 C(I)=(B(I)*C(l-l)+C(l))*T 
DO 466 IDASH=l ,NM2 
l=N-IDASH 
IJ=I+IDJ 

466 FID(IJ)=D(l)*FJD(IJ+ l)+C(I) 

C 
C--------------------------------------------------------------------

CHAPTER F F F F F ADJUST F(l,J),F(N,J) F F F F F F F F 
C 

IF(IKBLZ(J).EQ. I) GOTO 468 
Fl D(IIJ)=Fl D(l2J)+FLUXLZ(J)/(TLZ+ TINY) 
GOTO 460 

468 FLUXLZ(J)= TLZ *(F ID(Il J)-F ID(I2J)) 
460 IF(IKBHZ(J).EQ.l) GOTO 472 

Fl D(INJ)=Fl D(INMIJ)-FLUXHZ(J)/(THZ+ TINY) 
GOTO 470 

472 FLUXHZ(J)=THZ*(FID(INMIJ)-FID(INJ)) 
C 
470 IF(ITEST.EQ.l) GOTO 480 

WRITE(6,476) J,(FID(l+IDJ),l=l,N) 
4 76 FORMA T(6H F(l,,12, IH)/(3X, I P6E I 1 .3)) 
480 CONTINUE 
C--------------------------------------------------------------------

C 
C 

RETURN 
END 

C******************************************************************** 

SUBROUTINE BOUND(Il,OUT) 
C******************************************************************** 

C 
INCLUDE 'comp97.inc' 

C 
DIMENSION SI (2),S2(2),S3(2),S4(2),S5(2) 

C 
C-----------------------------------------------------------

CHAPTER A A A A A A PRELIMINARIES A A A A A A A A A A 
C 

KW ALL=2-l/I I 
12=11+3-2*KWALL 

C 
FACTOR=FLOAT(II/N) 
ZREF=Z(2)+(Z(N)-Z(NMl)-Z(2))*FACTOR 
SQR TK=SQRT(ABS(F(2,JK)+ TINY)) 
IF(KW ALL.EQ.2) SQRTK=SQRT(ABS(F(NM l ,JK)+ TINY)) 
ZPLUS=ZREF*SQRTK/(EMULAM/RHOREF) 
S3(1)=ROULLZ 
S3(2)=ROULHZ 
S4(l)=ABS(FLUXLZ(JRHOU)) 
S4(2)=ABS(FLUXHZ(JRHOU)) 
S5(l)=ABS(FLUXLZ(JRHOV)) 
S5(2)=ABS(FLUXHZ(JRHOV)) 
IF(ABS(FLUXLZ(JRHOU)).LE.TAUMIN)S4(1)=TAUMIN 
IF(ABS(FLUXHZ(JRHOU)).LE.TAUMIN)S4(2)=TA UMIN 



IF(ABS(FLUXLZ(JRHOV)).LE.TAUMIN)SS(l)=TAUMIN 

IF(ABS(FLUXHZ(JRHOV)).LE.TAUMIN)S5(2)=TAUMIN 

C 

C ---CALCULA TE SURFACE ROUGHNESS 

TA UB=SQRT(S4(KW ALL)**2+S5(KW ALL)**2+ TINY) 

FRIVEL=SQRT(TA UB/RHOREF+ TINY) 

S l(KWALL)=FRIVEL 
IF(S3(KWALL).GT.TINY) GOTO 20 

ZROUGH=EMULAM/RHOREF/C3B/S l(KW ALL) 

CCLOG=ALOG(ZREF/ZROUGH) 

S2(KW ALL)=CCLOG 

GOTO 21 
20 CONTINUE 

S2(KWALL)=ALOG(ZREF/S3(KW ALL)) 

21 CONTINUE 

IF(J.NE.JRHOU) GOTO 200 

C 
C--------------------------------------------------------------------

CHAPTER B B B B B B VELOCITIES B B B B B B B B B B 

C ---TLZ AND THZ FOR X-MOMENTUM 

FRIX=SQRT(ABS(S4(KW ALL))IRHOREF+ TINY) 

OUT=CAPPA *FRIX/S2(KWALL) 

GOTO 400 
200 IF(J.NE.JRHOV) GOTO 300 

C ---TLZ AND THZ FOR Y-MOMENTUM 

C 

FRIY =SQR T(ABS(SS(KW ALL))/RHOREF+ TINY) 

OUT=CAPPA*FRIY/S2(KWALL) 

GOTO 400 

C--------------------------------------------------------------------

CHAPTER C C C C C C OTHER DEPENDENT V ARIABLES C C C C C C 

C 

300 OUT=S I (KW ALL)/(l ./STANTN(J)+S2(KW ALL)/CAPPA) 

C 
C--------------------------------------------------------------------

400 IF(ZPLUS.LT. l 1.5) OUT=EMULAM/RHOREF/ZREFIPRL(J) 

IF(ITURBM.EQ. l) OUT=(EMUCON+EMULAM)/RHOREF/ZREF/PRT(J) 

IF(ITEST .EQ. I )  GOTO 40 l 

WRITE(6,4000) J,Il,OUT 

4000 FORMAT(! lH WALL TESTS,3H J=,13,4H Il=,13,6H OUT= ,El 0.3) 

40! CONTINUE 

RETURN 

END 

C 

C 
C******************************************************************** 

SUBROUTINE OUTPUT 
C******************************************************************** 

C 

C 

INCLUDE 'comp97.inc' 

DIMENSION LAB l (l 0,NPM),OUT( l 3 ),LAB2( l 0,NPM),LABl(l 3), 

l XLPLOT(500),YLPLOT(500, 10),IOUT( l l),LABEL(20),

2 XTPLOT(NIM),YTAXIS(6),YTPLOT(NIM,6),OUTALL(NIM,20)

DIMENSION XP(5),YP(5),LABP(I 0),TIMEP(500),XPART(500,4),

F YPART(S00,4 ), YPAXIS( 4),OUT l (NIM, l 0),OUT2(NIM, I 0)

F,PLABEL(20),KOUTl(NPM),KOUT2(NPM),HCONTl(NPM),SCONTl(NPM)

F,BFLUXH(NPM),BFLUXS(NPM)

C--------------------------------------------------------------------



CHAPTER 1 1 1 1 1 1 INITIAL DATA FOR PRINTOUT 1 1 1 1 1 1 
C 

C ----CROSS-STREAM OUTPUT(PROFILE) DATA 
C --ASSIGN KOUT1/2=NO. OF VARIABLES AND OUTPUT LABELS LAB(K) 

DATA (LABEL(K),K=l ,20)/4HUVEL,4HVVEL,4HTEMP,3HSAL,2HIC, 

C 

1 2H2C,2H3C,2H4C, 

2 2HKE,3HDKE,3HEMU,4HSIGM,4HDPDX,4HDPDY, IHW, 
3 4HPRSC,3HRIF,1HN,2HUW,2HVW/ 
DATA (PLABEL(K),K=l,20)/4HUVEL,4HVVEL,4HTEMP,3HSAL,2HlC, 
1 2H2C,2H3C,2H4C, 

2 2HKE,3HDKE,3HEMU ,4HSIGM,4HDPDX,4HDPDY, IHW, 
3 4HPRSC,3HRIF,1HN,2HUW,2HVW/ 
DATA (LABl(K),K=l,13)/IHZ,4HAREA,4HDZCL,4HUVEL,4HVVEL,4HTEMP, 
1 3HSAL,3HTKE,3HDKE,2HC1,2HC2,2HC3,2HC4/ 

C-----TRA VERSE(CROSS-STREAM) PLOT DATA 

C --ASSIGN NYT=NO. OF VARIABLES TO BE PLOTTED 

C --INSERT DIMENSIONS,ENSURE THA T ITDIM.GE.N AND JTDIM.GE.NYT 

DATA NYT/5/,ITDIM,JTDIM/40,6/ 
C --ASSIGN LABELS FOR PLOT AXIS 

DATA XTAXIS/4HZ(I)/ 
C 

DATA (LABP(K),K=l,9)/4HTIME,2HX1,2HY1,2HX2,2HY2, 
F 2HX3,2HY3,2HX4,2HY4/ 

DATA XPAXIS/2H XI
DATA (YPAXIS(K),K=l,4)/4*1HX/ 

DATA ILDIM,JLDIM/500,10/ 
C--------------------------------------------------------------------

C 
C--------NOTE,IN THIS SUBROUTINE X AND Y ARE USED AS COORDINA TES 
C FOR THE PLOT-ROUTINES. 
C 
C--------------------------------------------------------------------

CHAPTER 2 2 2 INITIAL OUTPUT AND CALCULA TIONS 2 2 2 2 2 2 
C 

IF(ISTEP.NE.0) GOTO 100 
IF(INIOUT)THEN 
WRITE(6,1000) 

WRITE(6,1008)('*' ,K=l, 19) 

IF(NPROBE.GT.l) WRITE(6,101 l)IPROBE 

WRITE(6,1001) 
VOLUME=0. 

DO 15 1=2,NMl 

VOLUME=VOLUME+AREA(l)*DZCELL(I) 
15 CONTINUE 

DO 10 J=l,NF 
IOUT(l)=J 
IOUT(2)=0 
IF(SOLV AR(J)) IOUT(2)=1 
IOUT(3)=1KBLZ(J) 

IOUT(4)=1KBHZ(J) 

IOUT(5)=ITRLZ(J) 
IOUT(6)=1TRHZ(J) 
IOUT(7)=1KBOT(J) 

OUT(l)=PRL(J) 

OUT(2)=PRT(J) 

OUT(3)=STANTN(J) 
10 WRITE(6,1003)(1OUT(K),K=l,7),(OUT(K),K=l,3) 

WRITE(6,1005)N,ZDIM,IGRID,ITURBM,INDPX,ITYPEH,LSTEP, 



I XDJM,INDARE,IPRSC,INDPY,ITYPEL,1LAST,YD!M,VOLUME 
WRITE(6,!0 I 0) CPHEA T,BETA,PFIL T,RHOREF,RADFRA, 
I ROULHZ,EMULAM,CORI,ROULLZ 

C-----INITIAL PROFILES 
C 

WRITE(6, l002) 
WRITE(6,1009)('*' ,K=l ,16) 
WRITE(6,1006)(LABl(K),K=l,9) 

DO ll l=N,1,-1 
OUT(l)=Z(I) 
OUT(2)=AREA(I) 
OUT(3 )=DZCELL(I) 
OUT(4)=F(l,JRHOU)IRHOREF 
OUT(5)=F(l,JRHOV)IRHOREF 
OUT(6)=F(l,JH)/RHOREFICPHEA T 
OUT(7)=F(l,JS) 
OUT(8)=F(l,JK) 
OUT(9)=F(l,JD) 

11 WRITE(6,l007)1,(OUT(K),K=l,9) 
WRITE(6, 10 l 2)(LABl(K),K=I 0, 13) 
DO 16 I=N,l,-l 
OUT(I 0)=F(l,JCI) 
OUT(l 1 )=F(I,JC2) 
OUT(l2)=F(l,JC3) 
OUT(13)=F(J,JC4) 

16 WRITE(6,1013)1,(OUT(K),K=I0,13) 
ENDJF 

C-----CALCULATE INITIAL HEAT AND SALJNITY CONTENTS 
HCONTl(IPROBE)=O. 
SCONTI(IPROBE)=0. 
BFLUXH(IPROBE)=0. 
BFLUXS(IPROBE)=O. 
DO 121=2,NMl 
HCONTl(IPROBE)=HCONTl(IPROBE)+F(l,JH)*DZCELL(l)* AREA(l) 
SCONTI(IPROBE)=SCONTI(IPROBE)+F(l,JS)*DZCELL(l)*AREA(I) 

12 CONTINUE 
C-----PRELIMINARY CALCULATIONS FOR OUTPUT 

NUMBPR=0 
DO 13 J=l,20 
IF(.NOT.PRPROF(J)) GOTO 14 
NUMBPR=NUMBPR+l 
IF(NUMBPR.LE. l 0) LAB I (NUMBPR,JPROBE)=LABEL(J) 
IF(NUMBPR.GT. l 0) LAB2(NUMBPR- l 0,IPROBE)=LABEL(J) 

14 CONTINUE 
13 CONTINUE 

KOUTl(IPROBE)=MIN(lO,NUMBPR) 
KOUT2(1PROBE)=MIN(l 0,NUMBPR-10) 

1000 FORMAT(IHl,l9HPRINCIPAL DATA USED) 
1011 FORMAT(IX,'IPROBE=',13) 
1001 FORMAT( IH0,5X,'PHI' ,2X,'SOLV AR' ,3X,'IKBLZ' ,3X,'IKBHZ', 

I 3X,'ITRLZ' ,3X,'ITRHZ' ,3X,'IKBOT', 
2 4X,'PRL' ,8X,'PRT' ,5X,'STANTN') 

1002 FORMAT(lHl,18H INITIAL PROFILES) 
I 003 FORMAT(IX,17 ,618, 1 P5E I 1.3) 
I 005 FORMA T(IIX,4H** ,2HN=,15,9X,5HZDIM=,IPE 10.3,5X,6HIGRID=,12,3X, 

l 7HJTURBM=,12,3X,6HINDPX=,12,3X,7HI
T

YPEH=,1215X,6HLSTEP=,15,
2 5X,5HXDIM=,IPEI0.3,5X,7HINDARE=,12,2X,6HIPRSC=,12,4X,
3 6HINDPY=,12,3X,7HITYPEL=,l215X,6HTLAST=, IPE8. l ,2X,
4 5HYDIM=,lPEI0.3,5X,7HVOLUME=,IPE10.3)



1006 FORMAT(IH0,2X,2HI ,A8,8A10) 

1012 FORMAT(IX/3X,2HI ,4A9) 

1007 FORMAT(IX,13,IP9E10.2) 

1013 FORMAT(IX,13,1P4El0.2) 

1009 FORMAT(IX,2X,16Al) 

1008 FORMAT(lX,19Al) 

1010 FORMAT(/5X,7HCPHEAT=,1PE10.3,5X,5HBETA=,1PE10.3, 

I 4X,6HPFIL T=, 1 PEI 0.3/5X,7HRHOREF=, lPEl 0.3,5X,7HRADFRA=, 

2 lPE10.3,2X,7HROULHZ=,lPE10.3/ 

3 5X,7HEMULAM=,1PE10.3,5X,5HCORI=, 

4 IPE10.3,4X,7HROULLZ=,IPE10.3) 

RETURN 

100 CONTINUE 

C 

C--------------------------------------------------------------------

CHAPTER 3 3 3 3 3 3 COMPUT OUTPUT REQUIRED AT EACH STEP 3 3 3 
C 

C-----INTEGRATE BOUNDARY FLUXES FOR HEAT AND SALINITY 

C ---IN/OUT-FLOWS 

DELH=0. 

DELS=0. 

DO 23 1=2,NM2 

DELH=DELH+QINFL(I)*PHIIN(I,JH)-QOUTFL(I)*F(I,JH) 

DELS=DELS+QINFL(l)*PHIIN(l,JS)-QOUTFL(l)*F(I,JS) 

23 CONTINUE 

BFLUXH(IPROBE)=BFLUXH(IPROBE)+NSTPDT(IPROBE)*DT*(FLUXLZ(JH) 

l * AREA(2)-AREA(NM l )*FLXRAD-FLUXHZ(JH)* AREA(NM l )+DELH)

BFLUXS(IPROBE)=BFLUXS(IPROBE)+NSTPDT(IPROBE)*DT*(FLUXLZ(JS)

1 *AREA(2)-FLUXHZ(JS)*AREA(NMl)+DELS)

IF(INDPT.EQ.0) GOTO 202

C-----PARTICLE TRACKING 

C -- PRELIMINARIES 

C 

IF(ISTEP.NE. l) GOTO 200 

DO 20 J= l,INDPT 

XP(J)=0. 

YP(J)=0. 

XPART(l,J)=0. 

YPART(l ,J)=0. 

20 CONTINUE 

200 CONTINUE 

C 

C -- NEW COORDINA TES 

C 

DO 21 J=l,INDPT 

IP=ILEVEL(J) 

XP(J)=XP(J)+NSTPDT(IPROBE)*DT*F(IP,JRHOU)/RHOREF 

YP(J)=YP(J)+NSTPDT(IPROBE)*DT*F(IP,JRHOV)/RHOREF 

21 CONTINUE 

C 

C --- SA VE COORDINATES 

C 

IF(MOD(ISTEP,IPSAVE).NE.0) GOTO 201 

ILP=ISTEP/IPSA VE 

TIMEP(ILP)=TIME 

DO 22 J=l,INDPT 

XPART(ILP,J)=XP(J) 

YP AR T(ILP ,J)= YP(J) 

22 CONTINUE 



201 CONTINUE 
C 
202 CONTINUE 
C 
C·----TESTS FOR PRINTOUT 
C ---IPRINT=I GIVES SINGLE(STATION) VARIABLES 
C ---IPRINT=2 ADDS THE ARRA Y(PROFILE) V ARIABLES 
C ---IPRINT=3 ADDS CROSS-STREAM PLOTS 

C 

IPRINT=O 
IF(MOD(ISTEP,NSTAT).EQ.0) IPRINT=I 
IF(MOD(ISTEP,NPROF).EQ.0) IPRINT=2 
IF(ISTEP.EQ.O.OR.ITPLOT.EQ.I) GOTO 1020 
IF(MOD(ISTEP,NPLOT).EQ.0.AND.ISTEP.NE.0.OR.ITEST.NE.l 
1 .OR.IFIN.NE.1) IPRINT=3 

1020 IF(IPRINT.EQ.0) RETURN 
C 
C-·-------···--------··---------·--·-------··--·-------··---------···

CHAPTER 4 4 4 4 4 4 STATIONVARIABLES 4 4 4 4 4 4 4 4 4
C
C-----CALCULA TE HEAT AND SALINITY CONTENTS

HCONT=0.0 

C 

SCONT=0.0 
VOLUME=0.O 

DO 30 1=2,NMI 
VOLUME=VOLUME+AREA(I)*DZCELL(I) 
HCONT=HCONT +F(l,JH)*DZCELL(I)* AREA(!) 
SCONT=SCONT +F(I,JS)'DZCELL(t)• AREA(!) 

30 CONTINUE 
WRITE(6,3000) ISTEP,DPDX(NMl),FLXRAD,DT,TIME,DPDY(NMI) 
IF(MOVE) WRJTE(6,3008) ZDIM,VOLUME 
IF(NPROBE.GT. l) WRITE(6,3007)1PROBE 
WRITE(6,3004) HCONTl(IPROBE),BFLUXH(lPROBE),HCONT, 
ISCONTI(IPROBE),BFLUXS(IPROBE),SCONT 
WRITE(6,300J) 
WRITE(6,3002)(FLUXHZ(K),K= 1,6) 
WRITE(6,3003)(FLUXLZ(K),K=l,6) 
WRITE{6,3009) 
WRITE(6,3010)(FLUXHZ(K),K=7,NJM) 
WRITE(6,301 l)(FLUXLZ(K),K=7,NJM) 

3000 FORMAT(l/!HX,4H** ,7H ISTEP=,15,9X,IOHDPDX(NM1)=,IPEI0.3,5X, 

I 7HFLXRAD=,1PEl0.3,5X,3HDT=,lPE10.3/6X,5HTIME=,IPEI0.3, 
2 5X,IOHDPDY(NM1)=,1PE!0.3) 

3001 FORMAT(14X,'XMOM' ,7X,'YMOM' ,7X,'HEAT ,7X,'SALT, 
I 8X,'TKE' ,8X,'DK.E') 

3002 FORMAT(lX,5X,'FLUXHZ',lP6El 1.3) 
3003 FORI\.1A T(lX,5X,' FLUXLZ', 1P6E 11.3) 
3009 FORMAT(IX/14X,'CONC.1 ',5X,'CONC.2' ,5X,'CONC.3' ,5X,'CONC.4') 
3010 FORMAT(IX,5X,' FLUXHZ' ,1 P4E\l.3) 
3011 FORMAT(lX,5X,'FLUXLZ',1P4EI 1.3) 
3004 FORMAT( IH0,5X,20HINTEGRAL CHECKS 

I l7HINIT. HEAT-CONT.=,IPEI l.3,20HINTEGR. BOUND. FLUX=,IPEl 1.3, 
2 l6HPRESENT H-CONT.=,IPEI 1.3,/ 
3 1X,5X,20H*"'*****,i,:******* 

4 17HINIT. SALT-CONT.=, lPEI l.3,20HINTEGR. BOUND. FLUX=,lPEI 1.3, 
5 16HPRESENT S-CONT.=,lPE!l.3/lX) 

3005 FORMAT(IH0,5X,'BOUNDARY FLUXES') 
3007 FO Rl\.1A T(IX,5X,' IPRO BE=' ,13) 



3008 FORMA T(lX,5X,'ZDIM=' ,IPE10.3,5X,'VOLUME=', lPEl0.3) 
C 

C--------------------------------------------------------------------

CHAPTER 5 5 5 5 5 5 CROSS-SRTEAM PROFILES 5 5 5 5 5 5 5 5 

C 
IF(IPRINT.EQ.l) GOTO 1050 

C 

C-----CALCULATE ALL OUTPUT 

DO 40 l=l,N 
C ---VERTICAL VELOCITIES 

WQ=0. 

IF(ABS(QZ(l)).LT.TINY) GOTO 45 

WQ=QZ(I)/(AREA(I)+ TINY) 

45 CONTINUE 

OUT ALL(!, I)=F(l,JRHOU)/RHOREF 

OUTALL(l,2)=F(l,JRHOV)/RHOREF 

OUTALL(!,3)=F(l,JTE) 

OUT ALL(l,4 )=F(I,JS) 

OUTALL(l,5)=F(l,JCI) 
OUTALL(l,6)=F(l,JC2) 

OUTALL(l,7)=F(l,JC3) 

OUTALL(I,8)=F(l,JC4) 

OUTALL(l,9)=F(l,JK) 

OUT ALL(!, 1 0)=F(l,JD) 

IF(I.EQ.1.OR.I.EQ.N) GOTO 401 

OUTALL(I, l l)=F(l,JEMU)+EMULAM 

OUTALL(I, l 2)=RHO(l) - l 000. 

OUTALL(l,l 3)=DPDX(I) 

OUTALL(I, 14)=DPDY(I) 

OUTALL(l,15)=WQ 

OUTALL(I, I 6)=PRSCNU(I) 

IF(I.LE.2.OR.I.GE.NMI) GOTO 401 

DRHODZ=(RHO(I+ 1)-RHO(l-l ))*RECDZ(I) 

DUDZ=(F(I+ 1,JRHOU)-F(l-1,JRHOU))*RECDZ(l)/RHO(I) 

DVDZ=(F(I+ l ,JRHOV)-F(l-1,JRHOV))*RECDZ(l)/RHO(I) 

OUTALL(I, 17)=-BUO(l)/(GRADSQ(l)+ TINY) 
OUT ALL(!, l 8)=SQR T(AMAX 1 (TINY ,-AGRA V/RHOREF*DRHODZ) ) 

OUT ALL(!, 19)=-F(l,JEMU)*DUDZ/RHO(I) 

OUTALL(l,20)=-F(l,JEMU)*DVDZ/RHO(I) 

401 CONTINUE 

40 CONTINUE 

C 

C ---MODIFY OUTPUT ACCORDING TO BOUNDARY CONDITIONS. 

C 

OUTALL(N,15)=0. 

IF(ITYPEH.NE.2) OUTALL(N,9)=0. 

IF(ITYPEH.NE.2) OUTALL(N, 10)=0. 

IF(ITYPEL.NE.2) OUTALL(l ,9)=0. 

IF(ITYPEL.NE.2) OUTALL(l,10)=0. 

IF(ITYPEH.EQ.2) OUTALL(N,ll)=OUTALL(N-1,11) 

IF(ITYPEL.EQ.2) OUTALL(l,l 1)=OUTALL(2,l l) 

IF(ITYPEH.NE.2) OUTALL(N,11)=0. 

IF(ITYPEL.NE.2) OUTALL(l ,11)=0. 

DO 41 1=1,N 

NUMBPR=0 

DO 42 J=l,20 

IF(.NOT.PRPROF(J)) GOTO 49 

NUMBPR=NUMBPR+l 

IF(NUMBPR.LE. 10) OUTl(l,NUMBPR)=OUTALL(l,J) 



IF(NUMBPR.GT.10) OUT2(1,NUMBPR-10)=OUTALL(l,J) 

49 CONTINUE 

42 CONTINUE 

41 CONTINUE 

C 

WRITE(6, 1099) (LAB 1 (K,IPROBE),K=l,KOUT l(IPROBE)) 

DO 46 l=N,1,-1 

46 WRITE(6,I098) l,Z(l),(OUTl(l,K),K=l,KOUTl(lPROBE)) 

IF(NUMBPR.LE.10) GOTO 47 

WRITE(6,1099) (LAB2(K,IPROBE),K=l,KOUT2(IPROBE)) 

DO 48 l=N,1,-1 

48 WRITE(6,1098) I,Z(l),(OUT2(1,K),K=l,KOUT2(1PROBE)) 

47 CONTINUE 

C 

IF(IPRINT.LT.3.OR.ITPLOT.EQ.1) GOTO 1050 

C-----ASSIGN CROSS-STREAM PLOTS 

DO 402 i=l,N 

402 XTPLOT(l)=Z(I) 

NUMBPR=0 

DO 44 J=l,20 

IF(.NOT.PLPROF(J)) GOTO 400 

NUMBPR=NUMBPR+ I 

DO 43 i=l,N 

43 YTPLOT(l,NUMBPR)=OUTALL(l,J) 

YTAXIS(NUMBPR)=PLABEL(J) 

400 CONTINUE 

44 CONTINUE 

NYT=NUMBPR 

C --CROSS-STREAM PLOT OUTPUT 

WRITE(6, 1096) TIME,ISTEP 

1096 FORMAT(18HICROSS-STREAM PLOT, 

I 6H TIME=,1PE10.3,7H ISTEP=,14) 

CALL PLOTLP(XTPLOT,ITDIM,N,XTAXIS,YTPLOT,JTDIM,NYT,YTAXIS) 

C 

C--------------------------------------------------------------------

CHAPTER 6 6 6 6 6 6 RETURN OR TERMINATE 6 6 6 6 6 6 6 6 

C 

1050 IF(IFIN.EQ.1) RETURN 

C-----PARTICLE TRACKING OUTPUT 

IF(INDPT.EQ.0) RETURN 

WRITE(6,500)(LABP(K),K= 1,9) 

DO 50 1=1,ILP 

OUT( 1 )= TIMEP(I) 

OUT(2)=XPART(I,1) 

OUT(3)=YPART(l,1) 

OUT(4)=XPART(l,2) 

OUT(5)= YPAR T(l,2) 

OUT(6)=XPART(l,3) 

OUT(7)=YPART(l,3) 

0 UT(8 )=XP AR T(l,4) 

OUT(9)= YPAR T(l,4) 

50 WRITE(6,501)1,(OUT(K),K=l,9) 

500 FORMAT(IH0,2X,2HI ,9A! 1) 

501 FORMAT(IX,13,IP9Ell.3) 

DO 51 J=l,INDPT 

DO 52 i= 1,ILP 

XLPLOT(l)=XPART(l,J) 

YLPLOT(I, l)=YPART(l,J) 

52 CONTINUE 



WRITE(6,502) J 

502 FORMAT(l2HPARTICLE NR.,13) 

CALL PLOTLP(XLPLOT,ILDIM,ILP,XPAXIS, YLPLOT,JLDIM, 1,YPAXIS) 
51 CONTINUE 

RETURN 

1098 FORMAT(lX,13,lPl lEl l.3) 

1099 FORMAT( 1H0,2X,2HI ,6X, !HZ, !OA 11) 

C 
END 

C 

C 
C************************************************************************** 

SUBROUTINE PLOTLP(X,IDIME,IMAX,XAXIS, Y,JDIME,JMAX, Y AXIS) 
C*************************************************************************** 

C 

C SUBROUTINE FOR PLOTTING J CURVES OF Y(I,J) AGAINST X(!). 
C 

C X AND Y ARE SCALED TO THE RANGE 0. TO 1., FOR PLOTTING AS 
C (Y-YMIN)/(YMAX-YMIN), THE MAXIMUM AND MINIMUM V ALUES ARE PRINTED 
C N.B. THE X AND Y ARRA YS MUST BE REDEFINED BEFORE EACH CALL PLOTS. 
C IDIME IS THE V ARIABLE DIMENSION FOR X. 

C !MAX IS THE NUMBER OF X V ALUES. 

C XAXIS STORES 11IE NAME OF THE X-AXIS. 

C JDIME IS THE V ARIABLE DIMENSION FOR Y. 

C !MAX IS THE NUMBER OF CURVES TO BE PLOTTED, (UP TO 30). 

C THE ARRA Y Y AXIS(J) STORES THE NAMES OF THE CURVES, 

C THE FIRST CHARACTER OF EACH CURVE-NAME IS USED FOR PLOTTING. 
C XSIZE ALTERS THE X-PLOT SIZE BY A FACTOR OF .2 TO 1., IN STEPS OF 

C YSIZE IS THE Y-PLOT SIZE FACTOR OF .2 UPWARDS IN STEPS OF .2 

C XSIZE=l., YSIZE=l. GIVES NORMAL SIZE PLOT. 

C 

DIMENSION X(IDIME),Y(IDIME,JDIME),Y AXIS(JDIME), 

1 A(l01),YMAX(30),YMIN(30),DIGIT(l 1) 

EQUIVALENCE (YMAX(l),A(l)),(YMIN(l),A(3I)) 
DATA DOT,CROSS,BLANK/lH.,lH+,lH I 

1,DIGIT/lH0, 1H 1, 1H2, 1H3, 1H4, IH5, IH6, I H7, IH8, 1H9, 1H 1/ 

C••••• SET PLOT SIZE FACTORS 

XSIZE=0.6 

YSIZE=0.6 

C*.,** SCALING X-ARRA Y TO RANGE 0 TO IOO*XSIZE 

XR= I 00. *XSIZE 

XMAX=-l.E30 

XMIN=+I.E30 

IM=IMAX 
DO 1 I=l,IM 

XMAX=AMAX 1 (XMAX,X(I)) 

I XMIN=AMINI(XMIN,X(I)) 

S=XR/(XMAX-XMIN+ 1.E-30) 

DO 2 I=l,IM 

2 X(I )=(X(I)-XMIN)*S 

C••••• SCALING Y-ARRAY TO RANGE 0 TO 50*YSIZE 

YR=50. *YSIZE 
JM=JMAX 

DO 4 J=l,JM 

YMAX(J)=-1.E30 

YMIN(J)=+ 1.E30 

DO 4 I=l,IM 

YMIN(J)=AMIN 1 (YMIN(J), Y (I,J)) 

4 YMAX(J)=AMAXl(YMAX(J),Y(I,J)) 



C COMP97.INC 
C 

C 

PARAMETER (NIM=IOO,NJM=30,NPM=30) 
PARAMETER (NSTORE=991 I) 
PARAMETER (NJMPl=NJM+ 1,NJMP2=NJM+2,NJMM4=NJM-4, 

A NJMM&=NJM-6,NJP2Nl=NIM*(NJM+2),NlMNJM=NlM*NJM, 
B NSTORl=9804,NSTOR2=107) 

COMMON 
c COMMON/COMl/ 
C-----ARRA YS 
C 

C 

A AREA(NlM),BUO(NIM),DIF(NJM),DIFREF(NIM),DPDX(NIM),DPDY(NIM), 
D DZ(NIM),DZCELL(NIM),DZCREF(NIM),EMU(NIM),PREF(NIM), 
D F(NIM,NJMP2),FLUXLZ(NJM),FLUXHZ(NJM),FW(NIM),GRADSQ(NIM), 
I IKBLZ(NJM),IKBHZ(NJM),ITRLZ(NJM},ITRHZ(NJM),JKBOT(NJM), 
N ILEVEL(4 ),NSTPDT(NPM),PHIIN(NIM,NJM),PRPROF(20),PLPROF(20), 
P PRSCNU(NIM),PRL(NJM),PRT(NJM),PHIQLZ(NJM),PHIQHZ(NJM), 
Q QINFL(NIM),QOUTFL(NIM),QZ(NIM),RECDZ(NIM), 
R RHO(NIM),Sl(NIM),SIP(NIM),SOLVAR(NJM),STANTN{NJM), 
T TFRAC(20),URUP(NIM),URUPUP(NIM),VI LZ(NJM},V2LZ(NJM), 
T V3LZ(NJM),V 4LZ(NJM),V5LZ(NJM},VIHZ(NJM), V2HZ(NJM),V3HZ(NJM), 
V V 4HZ(NJM), V51-f.l(NJM), VST l (NJM), VST2(NJM),Z(NIM),ZBO UND(NIM), 
Z ZSTl(NJM).ZST2(NJM),ZBREF(NIM),:ZSREF(NIM) 

COMMON/COM2/ 
C-----V ARIABLES 

C 

A AGRA V ,AREAHZ,BETA,CAPPA,CORl,CPHEAT, 
C CD,CD75,C ! ,C2,C3,C IPR,C2PR,C3PR,CEXPG,CEXPA,C3B, 
C CKSURF,CIRHO,C2RHO,C3RHO,C4RHO,C5RHO,C6RHO, 
D DT,DPDXP,DPDYP,DQl,DQ2,EMTMIN,EMUCON,EMULAM,FLXRAD, 
F FACTHZ,FAC

T

LZ,FKMIN,FDMIN,GREA T,ITYPEF,ITYPEH,ITYPEL, 
I IDJMF,IFIN,ILPLOT,IPROBE,ISTEP,ITEST,ITPLOT,ITURBM,INDPX, 
I INDPY,IPRSC,IGRID,INDARE,JNDPT,IPSAVE,ISTPR,INIOUT, 
J J,JRHOU,JRHOV,JH,JS,JK,JD,JCl,JC2,JC3,JC4,JEMU,JTE,KlNDA V, 
L LSTEP,N,NM l ,NM2,NF,NFP2,NSTAT,NPROF,NPLOT,NPROBE,MOVE, 
P Pl,PFIL T,PREEVA,QSURF,RADFRA,RHOREF,RTCD,RHOUP,RHOVP, 
P ROULLZ,ROULHZ,SRAD,TAUMIN,TU,TJNY,TREF,TLAST,TQI,TQ2,TIME, 
X XDIM, YDIM,ZDIM,ZSSTRT 

LOGICAL SOLVAR,PLPROF,PRPROF,MOVE,INIOUT 
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