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1. INTRODUCTION
1.1 Purpose of the manual

This manual is intended to provide users of the PROBE computer code with necessary
background information and assistance for successful use. The user in mind is supposed
to have some knowledge in the field of computational fluid dynamics, i.e. fluid
dynamics, numerical analysis and computer programming. However, the structure of
PROBE allows the user to develop his/her understanding of the code and computational
fluid dynamics in a gradual manner. PROBE, with its manual, is thus suitable as a
teaching aid.

The manual does not contain descriptions of applications of PROBE. These are given in
separate CASE-reports, each of which provides a full description of how to apply the
code to a specific problem. The CASE-reports are thus essential supplementary material
when one gets familiar with PROBE.

After studying the manual and running a few applications from CASE-reports it is
believed that the user will be in a position to carry out new applications. The reader
without prior experience of computational fluid dynamics should, however, be aware of
the fact that numerical prediction of fluid flow phenomena rarely becomes simple or
standard. This ig due to non-linearities in the basic equations and the boundary
conditions. Written material can therefore only assist the user in getting a good result;
the intelligence and insight of the user have to be relied upon in most situations.

1.2 The general features of PROBE

PROBE (PROgram for Boundary Layers in the Environment) can be classified as an
“equation solver for one-dimensional transient, or two dimensional steady, boundary
fayers”. Typical examples of such boundary Jayers are the Ekman layer and the
developing chanpel flow. A major difficulty in these kinds of flow is o characterise the
turbulent mixing in mathematical terms. PROBE embodies a two-equation turbulence
model, the &-¢& model, which calculates mixing coefficients. Together with two
momentum equations the turbulence model forms the basis for the hydrodynamical part
of the mathematical model. In the basic version six additional variables arc provided
for: heat energy, salinity, and four concentrations. The number of concentrations can, of
course, easily be increased when needed.

PROBE has been structured in a way which is believed to facilitate easy and safe use.
The user will only be concerned with one subroutine, called CASE, while the rest of the
program should not be subject to modifications. Many applications will only require the
insertion of about 15 FORTRAN-statements in CASE.

PROBE is written in standard FORTRAN-77 and requires very little memory. This
makes the code suitable for both PC:s and main frame computers. All units are in the
SI-system.

1.3 What PROBE can do

As already mentioned, it is boundary layers that is the class of flows considered. This
may seem to be a rather narrowly restricted class of flows. However, the number of
applications already carried out gives an opposite impression. For environmental flows
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and 1dealised one-dimensional analysis can often provide good insight and
understanding of a new problem. The name PROBE itself also indicates that a one-
dimensional analysis can be a preliminary sensor in a more complex (three-
dimensional) analysis. To give a first impression of what PROBE can do, a few
examples will be discussed briefly.

A. The entrainment experiment by Kantha et al. (1977)

This laboratory experiment deals with the rate of deepening of an initially two-layered
fluid suddenly exposed to shear on the surface, see Figure 1.1a. A race-track type of
flume ensures that the experiment is one-dimensional. Predicted and measured
deepening is shown in Figure 1.1b.

B. Autumn cooling of the ocean

The ocean Ekman layer, stratified with respect to both temperature and salinity, has
been analysed with PROBE (see Omstedt et al,, 1983). Unexpected phenomena, like
local temperature maxima, are found both in field measurements and predictions, see
Figure 1.1b.

C. The adiabatic atmospheric boundary layer

An example of a two-dimensional steady situation is given in Figure 1.1c, where the
flow over an island is shown {from Nordblom, 1997).

Hopefully, these examples will give the reader an impression of the kind of flows that
PROBE can be applied to. Complete instructions on how to modify the code for these
and other applications are provided in separate CASE-reports. These reports contain a
description of the problem, the mathematical formulation, a few results of predictions,
and a listing of the subroutine CASE. Presently available CASE-reports are listed in
Chapter 8.2.
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1.4 The history and future of PROBE

The first version of PROBE, even though it had no name at the time, was presented in
Svensson (1978). That version was designed for studies of the seasonal thermocline, but
other applications could also be carried out. In fact, it was the range of possible
applications that motivated the construction of the present more general version of
PROBE.

The version was first released in 1984 and has now been successfully applied to a wide
range of different problems. The 198G-version was further developed in several
respects, of which the more important ones are: A series of interacting runs can be
performed, a moving free surface is introduced, and more flexibility is provided in
terms of number of equations, cells, etc. The present 1997-version extends the
capabilities of PR@®BE further by including two-dimensional steady boundary layers
into the class of flows that can be analysed with PROBE.

The direction of future developments is closely related to the kind of applications that
will be dominating. Among several possibilities one may mention:

- Dispersed and layered two-phase flows. This is a difficult task, which will only be
undertaken, if the development work can be supported and motivated by a major
project.

- Re-write the code using object-oriented techniques. The present version does not
employ modemn concepts in respect of code-construction and coding. When PROBE
is more closely integrated with other code-systems it may prove necessary to te-
write the code.

1.5 Outline of the manual

A brief description of the basic differential equation and its finite difference counterpart
are given in the following chapter. Chapter 3 outlines the general features of the code.
The instructions on the use of PROBE are given in Chapter 4. Advice on effective use
can be found in Chapter 5, and finally in Chapter 6 some concluding remarks are given.
Details of the differential equations employed and the finite difference equations are
given in Appendix A, B and C, respectively. A listing of the code is the content of
Appendix D,

2, BRIEF DESCRIPTION OF BASIC EQUATIONS AND TECHNIQUES

2.1 The general differential equation

All differential equations can fermally be written as:

%4_“_8__“,43 :~_a._(r¢ @]4"&5’ (21)
ot Ox, &z 0z

Change Advection Diffusion  Source/Sink
in time



where ¢ isthe dependent variable, ¢ time, z vertical coordinate, x horizontal coordinate,

u horizontal velocity, I, exchange coefficient, and S, source and sink terms. For one-

dimensional cases the advection term is not active and for two-dimensional steady cases
the transient term is absent. The equation is formulated in a cartesian coordinate system
shown in Figure 2.1a. When ¢, as an example, is heat energy, the source term will
contain terms describing the penetration of short wave radiation, while for momentum
the pressure gradient is a typical source term. Advection along the vertical space
coordinate is included to account for vertical transport in a reservoir due to in- and
outflows. However, as it is not yet fully developed for general application, the term ts,
formally, included in the source term. A complete discussion of all differential
equations is given in Appendix A.

Boundary conditions may be specified in two different ways; either the value or the flux
of the variable in quesiion is given. 1f a wind stress on a water surface is prescribed, it is
thus the flux alternative that is chosen.

2.2 Numerical methods employed

The general differential equation can be integrated over a specified volume, a grid cell,
with the following result:

4’:‘(0:' "’LS&’) = ¢i+lAé +¢,.8 + S:‘ (2.2)

where D,, A, and B, are coefficients and S, and S,.’ source terms. The grid
arrangement is shown in Figure 2.1b. It is seen that variables are stored in A locations.
As two of these are on the boundaries, it follows that the number of cells is N ~-2.
Egquation (2.2) shows that the value of grid cell 4, ¢,, is related to the values in the
neighbouring cells ¢,,, and ¢, ,. The strength of the connection is given by the
coefficients A4, and B, which, on closer inspection, are found to represent transpert

effects. The detailed derivation of the finite difference equations is given in Appendixes
Band C.
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Figure 2.1, a) Coordinate system.

b) Grid cell arrangement.
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3. DESCRIPTION OF THE CODE

In this chapter the structure of PROBE and the purpose of the different subroutines will
be explained. The reader is advised, while reading the following sections, to make a
brief inspection of the listing of PROBE, supplied in Appendix D.

3.1 Flow diagrams

A flow diagram is given in Figure 3.1. As seen, the code is divided into two parts; the
user section and the general section. In terms of FORTRAN lines the user subroutine
CASE will only amount to a few percent of the total code, which amounts to about 1500
lines including all comment statements. The flow diagram shows four links between the
general section and the user section. It should be noted that three of these are within the
DO-loop in MAIN, which is responsible for the advancement in time (or space in a 2D
steady calcuiation). This BO-loop runs from chapter 4 to 9, as indicated. This
arrangement makes it possible to interact with the calculations in a simple way. An
example of when this is needed is given by the boundary condition at a water surface
for dissolved oxygen. If it is assumed that the oxygen content is at its saturation value,
one has to prescribe this value as a function of temperature, which is a calculated
variable. A continues interaction is thus needed.

The flow diagram in Figure 3.2 shows the special arrangements for linked runs
(NPROBE>1). In this mode PROBE may be thought of as an empty shell, which is
filled only through the contents of the common blocks. The subroutine STORE has the
task to store the common blocks and is thus called when it is time to read/write in a new
common block.
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3.2 General section subroutines
MAIN

For the purpose of describing only the main features of this subroutine, the special calls
and loops for linked runs (NPROBE>1) have not been explained. The reader is referred
to Figure 3.2 and suitable CASE-report for further details of use.

The subroutine that arranges and controls the calculation is called MAIN. In order to
facilitate understanding, the different chapters in MAIN and their interaction with other
subroutines are shown in the flow diagram. Chapter I provides input data initially set by
DFAULT. Some of these data are modified by the user in subroutine CASE Chapter I,
which is the first subroutine called. The grid and geometry is specified in DFAULT and
CASE, and necessary calculations using these data are done in the subroutines GRIB
and AREAD, which are called from Chapter 2 of MAIN. Chapter 3 initialises dependent
variables and variables, which are functions of the dependent variables. The main DO-
loop starts in Chapter 4 at the statement-number 400, In this chapter a new time-step is
also calculated, according to the information given in CASE. Chapter 5 specifies time-
dependent boundary conditions The CALL CASE(2) statement gives a link to CASE
Chapter 2, where transient boundary conditions can be provided. Chapter 6 calls the
COMP-subroutine, which performs the solution of the eguations. When leaving this
chapter, the calculation has thus advanced one time step. Then, in Chapter 7, density,
temperature, and eddy viscosity are updated. Tests are also made to ensure that
turbulent kinetic energy, £, and its dissipation rate €, are positive. The reason for this is
that negative values may be generated, because of strong buoyancy forces, during the
calculation. A small positive value is then prescribed. Chapter & calls the subroutine
OUTPUT and also calls CASE(4), where user specific output may be generated. In
Chapter 9 tests are made in order to decide whether to continne or to terminate the
calculation. If it is continued, a jump back to Chapter 4 is made.

DFAULT

This subroutine contains default values of all data that a user has to be concerned with.
A detailed discussion of this subroutine is given in the next chapter of the manual.

GRID

The computational grid can be arranged in alternative ways (uniform, expanding, etc.)
and that necessitates calculations of gridcell sizes, distances, etc. This is done in GRID.

AREAD

Lakes and reservoirs have a variation of horizontal area with depth. Idealised area-
distributions can be generated from CASE and calculated in the subroutine AREAD.

eUTPUT
This subroutine, as the name indicates, is responsible for printsut in various forms.

Options, which are set in CASE, control the frequency of output in the form of integral
parameters or profiles.

9



STORE

When linked runs (NPROBE>1} are performed, all information of a specific run is
contained in the common blocks. The subroutine STORE is used to store common
blocks, which are presently not active.

SURF

Necessary changes of the grid, when a moving surface is present, are done in this
subroutine.

PHYS

As discussed in Chapter 2, all equations may be presented in the general form:

% 0 8(. o
o + a‘{; u,-¢ = va;(]f}} .6—2—)+S¢"

To identify a variable one has to specify the transport coefficient, I',, and the source
term, S,. This is done in subroutine PHYS. In Chapter A, the eddy-viscosity for

gridnodes, F(LJEMU), the Prandtl/Schmidt number, PRSCNU (1), and the effective
viscosity, EMU(I}, for cell boundaries are calculated. Also a reference transport
coefficient DIFREF(T}, which is the coefficient for momentum, is calculated. In Chapter
B it is determined which variable is considered, and in the relevant chapter the transport
coefficients and the source terms are supplied.

comr

In this subroutine the execution of a forward step is performed, and it is therefore used
for each dependent variable at each time or space step. In order to save computer time
the F-array, which is the two-dimensional array where all variables are stored, is
converted into a one-dimensional array. Necessary changes of indices are made in
Chapter A. The results of subroutine PFHYS are linked to COMP in Chapter B, where
also the transport coefficients at the boundaries are included. The finite difference
coefficients, derived in Appendix B, are calculated in Chapter C, and the equation is
then solved in Chapter D. Depending on the type of boundary condition the flux or the
value of the variable at a boundary is then calculated in Chapter E.

BOUND

The transport coefficients close to the boundaries are caiculated assuming logarithmic
or linear profiles. When using these profile assumptions, information about the
hydrodynamic roughness length is needed. This information is given in CASE by
specifying ROULLZ and ROULHZ. Transport laws for heat, salinity, and concentration
include the Stanton number for the variable in question. These numbers are specified in
CASE, in the array STANTN.

16



PEA

This subroutine contains the code of the Partial Elimination Algorithm, see Spalding
(1976). The algorithm will allow a more stable solution for strongly coupled equations.
In the present centext it is the Coriolis' force that is responsible for the coupling.

3.3 User section subroutine

Only one subroutine, CASE, is subject to modifications by the user. Going back to the
flow diagram it is seen that CASE is divided into four chapters, each one having a
specific purpose. Instructions on use of CASE will be given in the next chapter of the
manual.

From the flow diagram in Figure 3.2 one may note that the information given in CASE
has to be selective for linked runs. This is done by a test ("an if-statement”) on IPROBE,
which is the running index for linked runs.

4. HOW T® USE PR®BE

Suppose that PROBE has been installed on the user’s computer and some cases have
been run for test purposes. The user is thus in a position to set up a new problem. It is
then recommended that the steps outlined in this chapter of the manual are followed,

4.1 Analysis of the problem considered

The first question to address is whether the case considered is in the class of flows
solved by PROBE. If not, can a meaningful approximation be made? If PROBE is
believed to be applicable, the next step is to characterise the problem in terms of
equations and boundary conditions. It is further recommended that an analysis of length
and time scales is carried out. This will be helpful when the grid size in space and time
is selected. If something like sine-period can be identified, one may, as a rule of thumb,
need 20 grid-cells or time-steps to resoive this period. Later, a more careful examination
of grid size and time-step independence should always be made.

To summarise, it can be stated that a careful analysis of the problem and a well-founded
expected behaviour of the process will significantly simplify the computational task.

4.2 Modification of default data

In this section the groups in DFAULT are explained and discussed. The values given in
this subroutine are called the default values and are the values that will enter the
calculation if not reset in CASE. The user is recommended to make notes about the
modifications in each group that are needed for the case to be set up. The modifications
will later be a part of the content of CASE. It should be emphasised that DFAULT
belongs to the general section and should never be subject to direct changes.



Group 1

C#*2**GROUP 1. GRID IN SPACE AND TIME
C-----N=NUMBER OF GRID CELLS PLUS 2. MAXIMUM=NIM.
N=NIM
TIME=0.
TLAST=1.E10
LSTEP=10
C-----GRID DISTRIBUTION IN SPACE
C-----IGRID=INDEX FOR GRID
C =! GIVES UNIFORM GRID
C =2 GIVES EXPANDING GRID FROM LOW Z
C =3 GIVES EXPANDING GRID FROM HIGH Z
C =4 INDICATES THAT THE GRID IS SPECIFIED IN CASE
C ----SEE MANUAL FOR DETAILS OF THE EXPANDING GRID
IGRID=1
CEXPG=1.1
DO 11 IJK=1,NIM
DZCELL(1JK)=0.
11 CONTINUE
C-----TIME STEP VARIATION
C A VARIABLE TIME STEP IS SPECIFIED BY THE TFRAC FIELD
C TFRAC/10.,1.,200.,2.,16*0./GIVES A TIME STEP OF 1.0 8
C  THE FIRST 10 STEPS FOLLOWED BY 200 OF 2.0 S.
C A CONSTANT TIME STEP IS OBTAINED BY SPECIFYING TFRAC(2)
C INCASE.

DO 12 DK=1,20

TFRAC(IIK)=0.
12 CONTINUE

TFRAC(1)=1.E8

ITYPEF=INDEX FOR TYPE OF FLOW
=] GIVES 1-D TRANSIENT FLOW (DEFAULT)
=2 GIVES 2-D PARABOLIC FLOW
ITYPEF=1

The maximum number of grid points that can be specified is NIM, which is a number
that can be set by the user in a parameter statement (see Section 5.5) and has a standard
value of 100. The actual number of grid points is called N. This means (see Figure 2.1)
that the standard number of grid cells is 98. A calculation can be terminated on two
criteria; if the maximum number of time-steps, LSTEP, is reached or if the integration
time, TIME has reached the maximum time, TLAST.

[oNeKe!

The expanding grid system is based on the geometrical series. The expansion factor,
CEXPQG, is the ratio between the height of the two neighbouring cells. Guidance for
choosing CEXPG is given by the following formulas:

Size of first cell in expansion = ZDIM*(CEXPG-1)/(CEXPG"2-1)
Size of last cell in expansion = CEPG™**ZDIM*(CEPG-1)/(CEXPGN2-1)

Where ZDIM is the physical dimension in the Z-direction.

The index ITYPEF is 1 for 1D transient flows and 2 for 2D parabolic steady flows.

12



Group 2

Cr###+GROUP 2. PHYSICAL DIMENSIONS
XDIM=1.E1D
YDIM=1.E10
ZDIM=1.EIO

C-----VERTICAL AREA DISTRIBUTION

C-----INDARE=INDEX FOR AREA-DISTRIBUTION
Coveee =1 INDICATES UNIFORM AREA
C--o-- =2 INDICATES LINEAR DISTRIBUTION
Coeee- =3 INDICATES NON-LINEAR DISTRB,,SEE MANUAL
C----- =4 DISTR. SPECIFIED IN CASE
INDARE=1
AREAHZ=1.0
CEXPA=2.

The physical dimensions of the computational domain are given by ZDIM, XDIM and
YDIM. ZDIM should always be reset in CASE, while XDIM and YDIM will only be
modified for special cases like lakes and reservoirs.

The non-linear area distribution is generated with:
AREA(D) = (Z(I)/Z(N))**CEXPA*AREAHZ.

CEXPA is thus the expansion factor, which has typical values from

~0.5 to 2.0. The default value 2.0 is typical for Swedish lakes. The linear distribution is
obtained, if INDARE is put to 2. CEXPA will then automatically be put to 1.0, and the
above expression will then generate the linear distribution.

Group 3

C*#+x+*GROUP 3. DEPENDENT YARIABLES
F(ILJRHOU)=X-DIRECTION MOMENTUM
F(I,JRHOV)=Y-DIRECTION MOMENTUM
F(I,JH)=HEAT-ENERGY
F(1,JS)=SALINITY
F(I,JK)=TURBULENT KINETIC ENERGY
F(1,JD)=DISSIPATION OF TURBULENT KINETIC ENERGY
F(1,JC1)=CONCENTRATION NO.|
F(I,JC2)=CONCENTRATION NO.2
F(1,JC3)=CONCENTRATION NO.3
IF(1,JC4)=CONCENTRATION NO.4
F(I,10+(NJM-10))=ADDITIONAL VARIABLES ACTIVATED FOR NJM>10.
F(ILJEMU)=DYNAMICAL EDDY VISCOSITY
F(IJTE)=TEMPERATURE

JRHOU=1

JRHOV=2

JH=3

JS=4

JK=5

D=6

ICl=7

JC2=8

JC3=9

JC4=10

DO 31 IK=} ,NJM

SOLVAR(IJK)=.FALSE.
31 CONTINUE

JEMU=NJMPI

JTE=NJMP2

cononononoononononnnn

PROBE solves for up to 30 dependent variables in the standard set up. If more
dependent variables are needed, a parameter statement (see Section 5.5) has to be reset.
NJM (equal to 30 in the standard set up) defines the number of variables accounted for.
Two more, dynamical eddy viscosity and temperature, are stored in the F-array. It

13



Group 7

C¥**++GROUP 7. SOURCE TERMS
C
C----CORIOLIS PARAMETER
CORI=1.E-4
C-----PRESSURE GRADIENTS
C INDPX=INDEX FOR PRESSURE GRADIENTS IN X-DIRECTION

=1 GIVES PRESCRIBED CONSTANT PRESSURE
GRADIENTS ,DPDXP.
=2 GIVES PRESCRIBED MASSFLOW,RHOUP.ONLY
RELEVANT FOR STEADY STATE PROBLEMS.
=3 GIVES PRESSURE GRADIENT DEVELOPMENT ACCORDING TO
HORIZONTAL EXTENT OF WATERBODY.ONLY RELEVANT TO
LAKES AND RESERVOIRS.
=4 INDICATES THAT THE PRESSURE GRADIENTS ARE TO BE
READ FROM SEPARATE FILE AS A TIME SERIES.
=.1,2,-3OR -4 AS ABOVE,BUT WITH BUOYANCY DAMPING
OF PRESSURE GRADIENTS(EFFECT OF TILTED TERMOCLINE).
INDPY=SAME FOR Y-DIRECTION
RHOUP=0.
RHOVP=0.
DPDXP=0.
DPDYP=0.
PFILT=1.
INDPX=1
INDPY=1
C-----IN- AND OUTFLOWS.,
C-----SEE MANUAL FOR INSTRUCTIONS ON USE
DO 71 IK=1,NIM
QZ(IK)=0.
QINFL(IJK)=0.
QOUTHL(IIK)=0.
DO 72 IKJ=1,NSM
PHIIN(IIK,IKJ)=0.
72 CONTINUE
71 CONTINUE
C-----SHORT-WAVE RADIATION
C  ASSUMED TO PENETRATE THE WATER BODY.
C FLXRAD=SHORT-WAVE RADIATION.
C RADFRA=FRACTION ASSUMED TO BE A BOUNDARY FLUX
c

OO0 0O0000000n

BETA=EXTINTION COEFFICIENT

FLXRAD=0.0

RADFRA=0.4

BETA=0.1
The details of the technique of calculating pressure gradients are given in Appendix A.
When the option INDPX (or INDPY) = 2 is used, one may get a diverging solution,
which never reaches a steady state. The user must then reduce the time-step and the
factor PFILT, which produces an under relaxation of the development of the pressure
gradients.

Unfortunately a trial and error procedure must be carried out to find the optimum values
on the time-step and PFILT. When INDPX (or INDPY) equals 3, or -3, a non-unity
PFILT has another implication. The pressure-gradient formula for lakes and reservoirs
simulates seiches with periods based on the dimensions of the water body. Often the
period is of the order minutes, which requires a time-step of the order 10 seconds (one
tenth of the seiche period). If PFILT is put to, for example, 0.2, the seiche period will be
5 times larger, and more economical time-step may be used. It should be noted that the
main effects of the pressure gradients will still be present. Test calculations should be
performed to establish whether this filtering of pressure significantly affects the overall
behaviour of, for example, a seasonal stratification.

The volume flux and the properties of in- and outflows can be specified from CASE.
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The volume fluxes are specified in QINFL (I} and QOUTFL (I) for in- and outflews
respectively. The in- and outflows generate a vertical volume flux, which is calculated
from an application of the continuity equation cell by cell. Properties only need to be
specified for inflows and are given in

PHIIN (1, ). If QINFL. # QOUTFL, when integrated over the depth, the moving
surface option needs to be activated (see Group 13).

Incoming short-wave radiation varies during the day and should therefore be specified
in CASE, Chapter 2. Examples of how this is done can be found in CASE reports on
thermacline development.

Group 8

C*****GROUP 8. INITIAL PATA
DO 81 11K=1.NIM
PPDX(HK)=0.
PPDY(1IK)=0,
FW(IK)=0,
DO 82 IKJ=1,NIMP?
F(UKIK)=0.
82 CONTINUE
81 CONTINUE
C-----INITIALISE DEPENDENT VARIABLES
C ISTPR=INDEX FOR STARTING PROFILES
C =1 PROFILES ARE SPECIFIED WITH VSTI(1-NIM)-ZST2(1-NIM)
c SEE MANUAL.
C =2 PROFILES ARE SPECIFIED IN CASE WITHOUT THE USE
c OF VSTI{1-NIM}ZST2(1-NIM).
¢ --NOTE:DEFAULT VALUE FOR ALL VARIARLES IS 0.0.
ISTPR=1
DO 83 IK=1,NIM
VSTI(IK)=8.
VST2(IK)=0.
ZSTI(K)=0,
ZST2{K}=0.
%3 CONTINUE

All variables in the F-array are here given the default value 0.0. Two altenatives are
available for the specification of non-zero initial profiles. If ISTPR equals 1, profiles are
specified according to Figure 4.1, while ISTPR equal 2 indicates that the profiles are
specified directly in the I'- array.

& vsrzip

255203k

/

ISTH I

RS IR

r

—
sty

Figure 4.1. Specification of initial profiles of dependent variables.

G

It is only the dependent variables that should be initialised; density, temperature, eddy
viscosity, etc. are calculated as functions of the dependent variables in subroutine
MAIN. In this context it is also necessary to remember that momentum and heat energy
are the dependent variables, not velocity and temperature.
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Group

CH**GROUP 9. BOUNDARY CONDITIONS

&

C-----ITYPEH=INDEX FOR TYPE OF BOUNBARY AT HIGH Z

[oReNoNeRe Ro oo RS Ne]

=1 GI¥ES SOLID WALL(STATIONARY OR MOVING)
=2 GIVES SYMMETRY LINE
ITYPEL=SAME FOR LOW Z BOUNDARY

+---}KBHZ(I}=INDEX FOR KIND OF BOUNDARY CONDITION FOR

YARIABLE } AT HIGH Z BOUNDARY

=1 GIVES PRESCRIBED YALUE

=2 GIVES PRESCRIBED FLUX
IKBLZ{J}}=SAME FOR LOW Z BOUNDARY

---]TRHZ(J)=INDEX FOR TIME®EPENRENCE OF BOUNDARY FOR

VARIABLE ]

=1 GIVES STATIONARY CONDITIONS

=2 GIVES TRANSIENT CONDITIONS SPECIFIED FROM CASE-

SUBR@UTINE.SEE MANUAL FOR INSTRUCTIONS ON USE.

=3 GIVES TRANSIENT CONDITIONS READ FROM FILE
ITRLZ(J)=SAME FOR LOW Z BOUNDARY

---IKBOT{])=INDEX FOR KIND OF BEHAVIOR AT BOTTOM FOR VARIABLE J

ONLY RELEVANT FOR CASES WITH VERTICAL AREA-DISTRIB.
=} GIVES "CONSERVATIVE" CONDITION.SEE MANUAL.
=2 GIVES "NON-CONSERVATIVE" CONDITION.SEE MANUAL.

----SPECIFICATION FOR STATIONARY BOUNDARY CONDITIONS

--SPECIFICATION FOR TRANSIENT CONDITICNS(ITRHZ OR ITRLZ=2}.SEE MANUAL

----SPECIFICATION OF WALL-FKN PARAMETERS,

ITYPEH=1
ITYPEL=!

DO 91 UK=1,NIM
IKBHZ(LIK)=2
IKBLZ(IJK)=2
ITRHZ(AIK)=1
ITRLZ(IIK)=1
IKBOT(LIK)=1
FLUXHZ(1IK }=0.
FLUXLZ(LIK)=0.
VIHZ(LIK)=0,
VIHZ(IJK)=0,
VIHZ(IIKy=0).
V4HZ(UK)=0.
VSHZ(IJK)<0.
VILZ{IK)=0.
V2LZ(IK)=0.
VILZ(IK)=0.
VALZ(K)=0.
V5LZ(K)=0.
STANTN(IJK)=1.E-3

%1 CONTINUE

IKBOT(1)=2
IKBOT(2)=2
IKBOT(3)=2
IKBOT(6)=2
STANTN(1)=1.
STANTN(2)=1.
STANTN(3)=0.05
STANTN(S)=1.
STANTN{(6)=l.
CAPPA=04
C3B=9.
ROULHZ=0.
ROULLZ=0.

18



If ITYPEH is put to 1, a wall is assumed to be present at the high Z boundary. This will
activate the wall functions in subroutine BOUND. The symmetry line conditions can be
used when a zero-flux condition prevails at the boundary in question.

Transient boundary conditions can be specified for all dependent variables according to
the following instructions:

FLUX or
VAL‘tJE With analogous
specification
for low 2
V3HZ}]
N
b
]
VIHZi} > TIME
SVGHZI) | VSHZ(2) —

Figure 4.2. Specification of transient boundary conditions.

The user must, of course, have made a decision , whether the boundary condition should
be specified as value or a flux when the values above are given. Alternatively the user
may specify transient boundary conditions in CASE, Chapter 2.

When a variable horizontal area is specified, the index IKBOT has to be considered. If
IKBOT is put to 1, a conservative condition is assumed, which means a zero flux
through the bottom area for all cells, see Figure 4.3. This may be suitable for heat and
salinity, while momentum is lost in the bottom contact, which indicates that IKBOT
should be put to 2 for momentum equations. Appendix B explains this point further.

:_; I 3\ 0 for IKBOT(J) = 1
| "] Flux to cell i-1 for IKBOT(J) = 2
Figure 4.3. Meaning of IKBOT.
Wall functions require information about the roughness of the surfaces. This is specified
in ROULHZ and ROULLZ, which are the roughness lengths, z, at high and low Z. A

zero value indicates that the surface is hydrodynamically smooth. Heat, salinity, and
concentrations are at a wall assumed to obey the following transport law:

FLUX (¢) = STANTN (¢ /. Ad

Where STANTN(q)) is the Stanton number for variable ¢, A¢ is the difference in ¢
between the boundary and the first cell, U, is the friction velocity.
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Group 10

C*+***GROUP 10. LIMITS AND NUMBERS
EMTMIN=1 E-6
FKMIN=1.E-15
FDMIN=1.E-15
TAUMIN=1.E-3
KINDAV=]

These numbers are minimum values that ensure that the variables considered never
become negative. Normally they should not be changed.

Group 11

C**+**GROUP ! I. PRINT OUT
Comemeem- PRINT CONTROL
C --SET ITPLOT=2 FOR CROSS-STREAM PLOT, =| FOR NO PLOT
ITPLOT=2
C --SET NSTAT,NPROF,NPLOT TO NUMBER OF STEPS BETWEEN OUTPUT OF
C STATION VALUES,PROFILES AND CROSS-STREAM PLOTS RESPECTIVELY
NSTAT=10
NPROF=50
NPLOT=100
C --SET INIOUT .FALSE. FOR NOINITIAL OUTPUT
INIOUT=.TRUE.
C
C---- SELECT PROFILES TO BE PRINTED AND PLOTTED.
C-----U,V,T,S,1C,2C,3C 4C K E,EMU,SIGM,DPDX,DPDY,W PRSCN,RIF,N,UW VW
C 1234,56,7,89,10,11, 12, 13, 14,15, 16,17,18,19,20

DO 111 DK=1,20

PRPROF(IJK)=.FALSE.

PLPROF(IJK)=.FALSE.
111 CONTINUE

C-----PARTICLE TRACKING.SEE MANUAL.
C-----INDPT=INDEX FOR PARTICLE TRACKING

C =0 GIVES NO TRACKING

C =1-4 ONE TO FOUR PARTICLES ARE TRACKED

INDPT=0

ILEVEL(1)=0
1LEVEL(2)=0
ILEVEL(3)=0

ILEVEL(4)=0

IPSAVE=1000
PRPROF is a logical array, which selects variables for printing of profiles. The particle
tracking routine is activated by putting INDPT to 1 — 4, then 1 to 4 particles are to be
tracked. Also ILEVEL, which is an array dimensioned to four, needs to be considered.
If, for example, ILEVEL(2) =30, particle number 2 will be on level Z(30). By IPSAVE
an interval, between which coordinates are to be saved, is specified. If IPSAVE = 10,
the coordinates will be stored every tenth time step. Maximum number of steps that can
be stored are 500. Examples on the use of the particle tracking routine can be found in
CASE-reports.

Group 12

C##*+*+GROUP 12.LINKED RUNS.
DO 121 UK=i ,NPM
NSTPDT(IJK)=1

121 CONTINUE
NPROBE=1

For linked runs, NPROBE is the number of runs to be done. NSTPDT(J) provides a
means of having different time steps in different runs. One run should have NSTPDT =
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1, which then indicates that this run should have the specified time step, DT. If another
run has, as an example, NSTPDT(S) = 4, it gives a time step of DT/4 for run number S.
Note that it is not recommended to specify different time steps in different runs directly
by TFRAC(2), due to the arranged interactions between the runs and the formulation of
output sequences.

Group 13

C#*+**GROUP 13. MOVING FREE SURFACE.
MOVE=.FALSE.
ZSSTRT=0.
PREEVA=0.

CHEFXEAA RO E ek ko dokokk Ao R R bk R R 3 ROk & ¥ kR OR ok R Rk

RETURN
END

MOVE is a logical, which is set to true, if a moving free surface is present. PREEVA is
precipitation and evaporation with dimension [m/s] and positive along the vertical space
coordinate. Rain on a lake surface is thus specified in [m/s] and has a negative value.
ZSSTRT means “Z-surface start” and gives the initial water surface level. This value
needs to be smaller than ZDIM, which is the maximum surface level that is to be
considered.

4.3 The CASE subroutine
Modifications of default values are included in Chapter 1 of CASE.

Chapter 2 of CASE provides a link to the MAIN subroutine. The link is intended for the
supply of transient boundary conditions, which can not be handled by the prepared
functions. An example is meteorological data obtained from field measurements, which
in this chapter should be read from a separate file and be included as transient boundary
conditions. Additional source terms should be supplied in Chapter 3, which provides a
link to the subroutine PHYS. A call is made from every dependent variable, and the user
has to select the appropriate variable to be supplied with extra source terms. The
following example shows a typical coding sequence:

IF (J.NE.JC1l) RETURN
DO 10 I = 2,NMl
FJCIN = F(I+1,JC1)*WSED
FJCls F(I,JCl)*WSED
IF(I.EQ.2) FJC1S = 0.0
IF(I.EQ.NM1) FJCIN = 0.0
10 SI(I) = SI(I) - (FJCIN - FJC1S)/DZCELL(I)
RETURN

it

[l

A source term for variable C1, which describes sedimentation with the settling velocity
WSED, is thus added. Further examples can be found in CASE-reports.

Additional output can be generated from Chapter 4 of CASE. The call to this chapter is
also from MAIN but this time from the position where the standard output is called for.
This ensures that the generated output is at the same integration time as the standard
output. Extra output may be useful, for example, when the dependent variables are
requested in a non-dimensional form. For linked runs one needs, as mentioned earlier,
to select the correct run (test on IPROBE) when providing information in subroutine
CASE. Examples can be found in CASE-reports.
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4.4 Test calculation

It is advisable to make a test calculation with LASTEP = 10 to make some preliminary
checking. Assuming that compilation errors have been eliminated and that numbers are
produced, the user should proceed through the following steps.

- Check the section “PRINCIPAL DATA USED”. Is everything according to
expectations?

- Check grid and initial profiles in the profile output called “INITIAL PROFILES”.

- Is the output generated after 10 steps according to expectations?

If no objections have been raised to the results produced, it is time to proceed with a
longer run. If the output shows an unrealistic or unexpected behaviour, one has to go
through the process of analysing and coding again.

5. ADVICE ON EFFECTIVE USE
5.1 Grid independence in space and time

A coarse grid, i.e. few cells and large time steps, needs less computer time and should
be used during the preliminary stages of the calculations. However, only the grid-
independent solution, in space and time, represents the true implication of the
differential equations. A systematic refinement of the grid must therefore always be
carried out, if a claim that the differential equations have been solved is to be made. It is
thus recommended that a coarse grid, which typically could be 15 grid-cells, is used in
the preliminary stage and a grid refinement study is carried out before the final
calculations are performed.

5.2 Use of integral checks

Integral checks for heat and salinity are supplied by PROBE. These should always be
studied, as they may indicate errors in boundary conditions or in the stability of the
numerical solution. Note that the integral checks are not valid, if extra source or sink
terms are added to the equations for heat and salinity.

When concentration equations are solved for, the user is advised to make estimates of
the integral balances, when possible.

5.3 Verification studies

In order to get confidence in predicted results, some form of verification is needed.
Some or all of the following steps may then be considered.

- Is it possible to idealise the situation in such way that an analytical solution can be
obtained? If so, one may set up PROBE to solve the same situation, and an
agreement that is only limited by the grid dependence should be the result. One
should, of course, never expect more than 5 — 6 correct figures, due to the limitation
of the computer.

- Are there any laboratory experiments, which consider the basic physical processes,
available? If so, these may be very useful for verification studies, as boundary
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conditions, initial conditions, and the quality of the recording of the process are
normally known with good accuracy.

- Are there any other model-predictions for the problem considered available? If so,
and if these may be regarded as “well established and accepted”, one may consider
to repeat these.

- The final test is, of course, the application to the environmental problem itself. This
is the most difficult part with transient and often incomplete boundary conditions.
This makes it often hard to judge the degree of success when comparing predicted
and measured behaviour.

5.4 Causes of diverging solutions

A diverging solution is normally easy to detect; integral checks are not fulfilled, and
unrealistic profiles are predicted. Assuming that the user by studying CASE and initial
outpul, has checked that the problem specification is correct, one may consider the
following points:

- Has it been firmly established that a solution to the problem, as it has been defined,
exists? One should, in this context, be particularly observant on the prescribed
boundary conditions.

- Have all length and time scales in the problem been identified? If a typical period in
space or time can be found, one may need 10 — 20 grid-cells or time-steps to resolve
the process.

- If a lake or reservoir is considered, the seiche period will enter through the pressure
gradient formula. Once again a time-step of the order one tenth of the seiche period
is needed.

- If a sedimentation process is considered, one should estimate the time-step required
with respect to the settling velocity. The time it takes for particle to travel across a
grid-cell may be used as an estimate of the time-step required.

5.5 Some advice on mounting PROBE

Test installation of the present version of PROBE have been carried out on VAX 8600,
UNIVAC 1188, CRAY, SUN and PC:s. The experiences from these installations can be
summarised as:

- The inclusion of the parameter statements and the common-blocks needs to be
arranged according to the computer used.

- The unlabelled common-block IA1 in subroutine STORE needs to be dimensioned
to NSTR1 (and not 1) on some computers. Note that one then needs to recompile the
code, when the maximum number of cells, equations or runs are reset.

- Of the two common-blocks, which are to be included in most subroutines, one is
unlabelied. This one corresponds to IA1 in subroutine STORE. It may be necessary,
on some computers, to have these two common-blocks as labelled and then also, as
mentioned above, give IAl the dimension NSTR1.

- TFRAC(1) is the number of time steps with time step TFRAC(2). TFRAC(1) is
converted into an integer in the code. The default value 10® may be too large for
some computers (especially PCs) to convert into an integer . Reset TFRAC(1) in
CASE, Chapter 1, if this is the case.

When the code has been mounted and found to reproduce results from test cases, the
user may wish to change the pre-set maximum number of cells, equations or linked

23



runs. This is done in the parameter statements proceeding the common-blocks. When
any of these values (NIM, NJM or NPM) is reset, one also needs to reset NSTORI (for
the first common-block) and NSTORE (the size of both the common-blocks, NSTOR1
+107). NSTORI is calculated according to:

NSTORI = (27 * NIM + 27 * NJM + NIM * (NJM+2) + NIM * NJM + NPM + 64),
which is equal to 9804 for the pre-set values.

6. CONCLUDING REMARKS

It is time to recall a sentence from the introduction, stating that computational fluid
dynamics seldom becomes standard or simple. It is therefore not possible, and has not
been the objective, to write a manual that ensures safe use of PROBE. Instead it is
hoped that it will assist a potential user, who is expected to add his/her own insight and
intelligence.

7. NOMENCLATURE

The following glossary of FORTRAN variable names is arranged with reference to the
GROUPS in the subroutine DFAULT.
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Group |[Name Type Meaning

1 N Integer Number of grid points

| Time Real Integration time

1 TLAST Real Maximum integration time

1 LSTEP Integer Maximum number of time steps

! IGRID Integer Index for grid

] CEXPG Real Expansion factor for grid

1 DZCELL(NIM) |[Real array Vertical dimension of celis

1 TFRAC (20) Real array Specification of time step

1 ITYPEF Integer Type of flow, 1D or 2D

2 ZDIM Real Physical dimension in Z-direction

2 XDIM Real Physical dimension in X-direction

2 YDIM Real Physical dimension in Y-direction

2 INDARE Integer Index for area-distr.

2 AREAHZ Real Horizontal area of top cell

2 CEXPA Real Expansion factor for area-distr.

3 F(NIM, NJM+2 |Real array Dependent variables, eddy viscosity
and temperature for all cells

3 SOLVAR (NJM) |Logical array |Select variables to be solved for

4 CPHEAT Real Specific heat

4 RHOREF Real Reference density

4 EMULAM Real Laminar viscosity

4 PRL (NJM) Real array Laminar Prandtl/Schmidt numbers

4 AGRAV Real Acceleration due to gravity
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Group |Name Type Meaning
5 C(1-5)RHO Real Coefficient in eqn of state
5 TREF Real Temperature of max. density
6 [TURBM Integer Index for turbulence model
6 IPRSC Integer Index for Prandtl/Schmidt number
6 EMUCON Real Constant turbulence viscosity
6 PRT(NIM) Real array Turbulent Prandtl/Schmidt number
6 CD->CKSURF  |Real Constants in furbulence model
7 CORI Real Coriolis” parameter
7 INDPX Integer Index for pressure gradients
7 INDPY Integer Index for pressure gradients
7 RHOUP Real Prescribed mass flow
7 RHOVP Real Prescribed mass flow
7 DPDXP Real Prescribed pressure gradient
7 DPDYP Real Prescribed pressure gradient
7 PFILT Real Pressure filtering coeff.
7 QZ(NIM) Real array Vertical volume flux
7 QINFL(NIM) Real array Inflow
7 QOUTFL(NIM) |Real array Outflow
7 PHIIN(NIM, Real array Properties of inflow
NIM)
7 FLXRAD Real Short wave radiation
7 RADFRA Real Fraction of RADIN absorbed at
surface
7 BETA Real Extinction coefficient
8 F(NIM, NJM~+2) |Real array See Group 3
8 BPDX(NIM}  Real array Pressure gradient, X-dir.
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Group |Name | Type Meaning
8 DPDY(NIM) Real array Pressure gradient, Y-dir.
8 ISTPR i Integer Index for starting profiles
8 VSTI(NJM) Real array Vales for starting profiles
VST2(NIM)
8 ZSTI(NIM) Real array Z-levels for starting profiles
ZST2(NIM) '
9 ITYPEH Integet Index for boundary at high Z
9 ITYPEL Integer Index for boundary at low Z
9 IKBHZ{NJM) Integer array | [Index for beundary conditions at high
z
9 IKBLZ(NIM) Integer array | Index for boundary conditions at low
Z
° ITRHZ(NJM) Integer array | Index for time-dependence at high Z
9 [TRLZ(NJM) |Integer array  |Index for time-dependence at low Z
9 IKBOT(NJM) Integer array | Index for behaviour at bottom
9 FLUXHZ(NIJM) |Real array Flux at highZ
9 FLUXLZ(NJM) |Real array Flux at low Z
9 VIHZ(NJM) Real array Specify transient boundary conditions
VSLZ(NIM)
9 STANTN(NJM) |Real array Stanton number
9 CAPPA Real Von Karman's constant
9 C3B Real Constant in wall-function
| 9 |ROULHZ Real Roughness lengih at high Z
| 9 {ROULLZ Real Roughness length at low Z
0 EMTMIN Real Min. value for eddy visc.
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Group |Name Type Meanin g _

10 FKMIN Real Min. value for turb. energy

10 FDMIN Real Min. vatue for dissipation

10 TAUMIN Real Min. shear fer wall-functions

10 KINDAV Integer Index for harmonic or aritmetic
averaging of diffusion coefficient

11 NSTAT Integer Steps between station values

11 NPROF Integer Steps between profiles

11 PRPROF (20) Logical array | Selected printed profiles

11 INDPT Integer Index for particle tracking

11 ILEVEL(4) Integer array | Levels for tracking

11 IPSAVE Integer Steps between saved coordinates

11 INIOUT Logical Controls initial output

12 NSTPDT(NPM) |Integer array | Numbers of steps on each time step
for each run

12 NPROBE Integer  Number of linked runs

13 MOVE Logical Activates the moving surface mode

13 | ZSSTRT Real  Initial water surface level

113 PREEVA Real | Precipitation/evaporation
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8.2 Presently available CASE-reports.
A. Basic fluid mechanics, heat and mass transfer

A 1. The laminar plane Poiseuille flow.
Urban Svensson (1984).

A 2. The constant viscosity Ekman layer.
Urban Svensson (1984).

A 3. The plane Couette flow.
Anders Omstedt (1984).

A 4. The wind-induced channel flow.
Jorgen Sahlberg (1984).

A 5. The turbulent plane Poiseuille flow.
Urban Svensson (1984).

A 6. The extrainment experiment by Kantha, Phillips, and Azad.
Jorgen Sahlberg (1984).

A 7. The entrainment experiment by Deardorff, Willis, and Lilly.
Urban Svensson (1984).

A 8. The frazil ice experiments by Tsang and Hanley
Anders Omstedt (1984).

A 9. Dispersion of marked fluid elements.
Urban Svensson (1985).

B. Oceanography

B 1. The homogeneous Ekman layer.
Anders Omstedt (1984)

B 2. Mixed layer deepening in a continuously stratified rotating fluid.
Jorgen Sahlberg (1984).

B 3. The Ekman boundary layer stratified with respect to salinity and
temperature,
Anders Omstedt (1984).

B 4. Supercooling and ice formation in a turbulent Ekman layer.
Anders Omstedt (1984).

B 5. Wind-forced sea ice motion.
Anders Omstedt (1987).

B 6. The development of a seasonal thermocline in the ocean.
Urban Svensson (1984).

30



C.

7. Inertial trajectories in the Baltic.
Urban Svensson (1984).

8. Frazil ice and grease ice formation in the upper layers of the ocean.
Anders Omstedt (1985).

9. The diurnal thermocline.
Goran Lindstrém (1985).

10. Dispersion in an ocean Ekman layer.
Urban Svensson (1985).

11. The water level response in two coupled ocean basins to tides and
TIVErs.

Anders Omstedt (1986).

12. The exchange of properties between two ocean basins.
Anders Omstedt (1986).

13. Fjords with wide sounds.
Anders Omstedt (1986).

14. Autumn Cooling in the Kattegat, the Belt Sea, Oresund and the
Arkona Basin.
Anders Omstedt (1986).

15. Vertically coupled Ekman layers.
Urban Svensson (1986).

16. Wind-forced sea ice motion during freezing and melting.
Anders Omstedt (1987).

17. The ocean boundary layer beneath drifting melting ice.
Anders Omstedt (1988)

18. Fjord exchange driven by coastal variations.
Anders Omstedt (1988)

19.Seasonal variations of a sea ice cover.
Anders Omstedt (1990)

20. Seasonal cycle of salinity in the Mackenzie Shelf/Estuary.
Anders Omstedt (1993)
HYDROLOGY

1. Autumn cooling in a lake.
Jorgen Sahlberg (1984).

2. Thermocline development in a lake.
Urban Svensson (1984).
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D

D

10.

11

12.

. Thermocline development in a reservoir with in- and outflows.

Urban Svensson (1984).

. Ice covered lake with sediment heat flux.

Jorgen Sahlbherg (1984).

. Heat loss in an ice covered lake due to a heat pump.

Jorgen Sahlberg (1984).

. Formation of frazil ice, slush and anchor ice in rivers.

Anders Omstedt.

. Transient groundwater {low.

Urban Svensson (1985).

. Heal and mass transfer in unsaturated soils.

Urban Svensson (1985).
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APPENDIX A

MATHEMATICAL FORMULATION
1. Basic assumptions

Most assumptions are related to the one-dimensional treatment of the
situations considered. All gradients in the horizontal directions are then
neglected. The effect of a horizontal distribution of heat and momentum
flux at a lake surface is thus not possible to include.

It will further be assumed that turbulent mixing processes can be described
by turbulent exchange coefficients. This description is based on Reynold’s
averaging of Navier-Stoke’s equations, which accordingly is assumed to be
valid. The introduction of exchange coefficients and gradient laws exclude
the proper treatment of counter gradient fluxes. Internal absorption of short
wave radiation is assumed to follow an exponential decay law. Gravitational
effects are assumed to obey the Boussinesq approximation, and the effect of
the rotation of the earth is described by the Coriolis” parameter.

In PROBE vertical advection due to in- and outflows at different levels in a
reservoir 1s accounted for. However, since the treatment is not general (for
example, advective momentum transport across boundaries is not allowed),
the advective term will not be included in the general treatment of the
equations but considered as a source/sink term in the special case mentioned
above.

In the 1997 version of PROBE an option for two-dimensional steady
parabolic flows is introduced. In the presentation below the set of equations
for this option can be obtained by replacing the time derivative (6([)/ Gt) with

an advective term (d¢u/0x). A full account of the two-dimensional option
is given in Nordblom (1997).

2. Momentum equations

Within the assumptions made, the momentum equations read:

@_(_]_:_6_1)+£ Ko OpU + fov (A1)
ot ox 0z\ p Oz
ﬂz_@i+3 Ry SV - U (A2)
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where ¢ is time coordinate, x and y horizontal space coordinates, z vertical
space coordinate, U/ and ¥ horizontal velocities, p pressure, f Coriolis’
parameter, and p density. The dynamical effective viscosity, p,,, is the

sum of the turbulent viscosity, t,, and the laminar viscosity, p. Pressure



gradients may be treated in several ways, depending on the problem
considered.

a)
b)

Prescribed

Calculated with respect to a prescribed total mass flux. The formula

employed is iterative of the following type:

apf+l apl .

——=—"—+PFILT *\pu — pu A3
o o (p P ,,) (A3)

where i is iteration step, PFILT a constant, 5 total mass flux and a »

prescribed total mass flux. The formula produces a pressure gradient,
which in the steady state gives pu equal to pu . From the formula it

can be understood that the value of PFILT will not affect the converged
solution.

Pressure formula for lakes and reservoirs. In Svensson (1978) (see also
Svensson and Sahlberg (1989)) pressure formulas for lakes and
reservoirs were derived, which simulate the effect of the limited
horizontal extent of a water body:

o(adp nux D
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where g is the acceleration due to gravity, D depth, u and v mean
velocities, ©=3.1416, and L, and L, horizontal dimensions of the

water body.
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Figure A.1. lllustration of stratification effects on the pressure gradient.

It is however, necessary to include the effect of stratification on the pressure
gradients, as illustrated in Figure A.1. The tilted thermocline shown has
been observed both in lakes and in the laboratory. Realising that the effect
of the tilt is to eliminate pressure gradients below the interface, one may
formulate the following expressions:
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where 7 is time level and As time step. It is thus formulae (A 4) and (A 5)
with the time derivative expressed as a finite difference, that are the basic
equations. From the formulae it is seen that the effects of stratification will
be that pressure gradients are zero close to the bottom, since 7" then equals

Tonom » and that they will be unaffected close to the surface, 7 then equals
T, - These implications are qualitatively correct. The formulae do,

however, not contain any mechanism for the generation or description of
internal oscillations. It should be mentioned that the formulae A 4 — A 7 are
tentative and have not yet been fully tested.

3. Heat energy equatisn

O Hep ’
a(pa T)= a ( Hey 5’(;;(; T)]+R(1 n)e FP-7) (A 8)
Z p(fd}-
where
Py B, Br (A9)
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temperature is denoted by 7, ¢, is specific heat, R incoming short wave
radiation, m fraction of R absorbed at surface, B extinction coefficient, and

o) o,, and o ecffective, turbulent and laminar Prandtl numbers

w2
respectively.

4. Salinity and concentration equations

These equations can be expressed in the general form:

o oz p(;,fjr az

where ¢ stands for salinity, s, or one of the concentrations cl, ¢2, c3 eor c4.
No source terms are provided for these variables. The user thus has to
supply these explicitly, when it has been established what source and sink
terms the concentration equation considered has.



5. Turbulenee model

PROBE embodies a two equation turbulence model, the £ —& model. A
detailed description of the derivation and application of this model is given
by Rodi {1980). The dynamical eddy viscosity is calculated from the
turbulent kinetic energy, % and its dissipation rate, £, by the
Prandtl/Kolmogorov relation:

2
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where €, 1s an empirical constant. The equations for k¥ and ¢ can be

derived from the Navier-Stokes equations and thereafter modelled to the
following form:

Turbulent kinetic energy:
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Dissipation of turbulent kinetic energy:
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where P, is the production due to buoyancy, which includes contributions

from heat energy, salinity and the four concentration equations. The
turbulent Prandtl/Schmidt numbers and coefficients of expansion will then
enter the expression. Further details can be found in Rodi (1980).

6. Turbulent Prandtl/Schmidt numbers
Two options are available for the turbulent Prandtl/Schmidt numbers. The

numbers can be given constant values or be calculated from the following
formula.

Gzil+¢§r(c;"' "fd)T)XB (A 15)
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where
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is a buoyancy parameter. This formula was originally suggested by Launder
(1975), where details about the derivation and numerical values of constants
can be found, for the case of only one buoyancy affecting variable. Above it
is extended to include several variables by simply adding the effects. It
should be noted that this procedure has not been verified by a detailed
derivation similar to the one done by Launder.

7. Boundary conditions

For momentum, heat energy, salinity, and concentrations, boundary
conditions can be applied in two different ways; either the flux of the
variable or the value of the variable at the boundary is given. A shear stress
at a water surface, for example, is a “flux condition”, while the zero velocity
at a bottom is a “value condition”.

The boundary conditions for k and € are somewhat different. When a shear
stress or a turbulence producing buoyancy flux is present at a boundary, &
and € are specified close to the boundary in relation to these fluxes. Details
can be found in Svensson (1978) and Rodi (1980). If no shear or bouyancy
flux is present, k and € are treated as if the boundary was a symmetry plane,
1.e. a zero gradient condition is assumed.

8. Equation of state

The equation of state assumes a quadratic relationship between temperature
and density and linear relationship for salinity and concentration, thus:

p=pyll=o,(T=T.F +0,8 +0,C, +0,C, +0,C, + 0, Cy) (A 17)

r

where p, is a reference density, 7, the temperature of maximum density
and o, —a, coefficients. In order to obtain maximum accuracy it may be
needed to tune 7, and the coefficients. It is, for example, necessary to
choose 7, with respect to the salinity interval under consideration.

r






APPENDIX B

THE FINITE DIFFERENCE EQUATIONS FOR THE
ONE-DIMENSIONAL TRANSIENT OPTION.

1. Introduction

There are several ways of deriving the finite different form of differential
equations. In this appendix they will be derived by integrating the
differential equations over control volumes. The general outline of the
technique follows from Spalding (1976) or Patankar (1980).

2 The grid arrangement and the general differential equation

All the differential equations given in Appendix A may be presented in the
general form:

op O 0
2 2(r2)es, ® 1)

where ¢ stands for pu, when x-direction momentum is considered, pc7
when heat energy is considered, etc. The source term for the variable ¢ is
denoted by S, and T', is a transport coefficient defined by:

i
1’*¢ = eff
p0‘ej}ﬂ¢

(B2)

where o, , is the effective Prandtl/Schmidt number for the variable ¢ .

VeaTical C.OoROINATR Z.

Anda, Ar(a) N
I.(N‘ zDapti i rr —élépé/?ﬂ

HRE —=

ConTADL MM,
z(in) J conmor vorome @ : / T -
. 777 5 é
z{¢) W pr——— W‘U"‘ i}

(i) o

3 = e}
al N ‘?_//3/;1 __-_t"‘l‘- £
z_(w)'-o'o U D
| At

Figure 1. lllustration of grid and control volumes.

This general equation is to be integrated over the control volume with index
i, see Figure 1. From this figure it can also be seen that the vertical variation
of horizontal area, A4r(z), will be considered. This variation will be taken as

stepwise, as illustrated.



Time will be denoted by ¢, and when considering a control volume, U stands
for up and D for down, along the time axis. N is the number of grid lines in
the vertical direction, and NM1 means N-1, NM2 means N-2, etc.

2. Integration over a control volume

Equation (B 1) is to be integrated over horizontal area, vertical distance and
time. This will be done for the general control volume i. Thus:

A,j,-f["*i) ”f[?&i(r _‘3_¢L)+S¢j|dt dz ddr
0 6 © (B 3)

Integrate this equation term by term.
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Figure 2. Detail of the control volumes.
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where ¢* is some time between U and D. To increase the numerical stability
of the scheme, time level D will be used for * whenever possible. With this
choice the numerical solution technique is of the fully implicit kind.



In the above expression Ar(i+‘/z) and Ar(i——’/z) are used. The stepwise
specification of Ar is , however, discontinuous at these locations, and the
question then arises, which Ar should be used. To settle this, one has to look
into the physical significance of (B 5), see Figure 2.

The term (Arl"0 ?] represents a loss (assume %>0) for control
i~%
volume i at the lower boundary due to diffusive transport. It also represents
a gain for control volume i-1 at the upper boundary. If there is no loss
associated with the bottom contact, we will require that all the flux leaving
control volume i shall enter control volume i-1. An example of such a
variable is heat energy, as it is well known that only a negligible part of the
vertical heat flux will be stored in the bottom sediments. The correct area at

i—Y is thus Ar(i—1), and with the same arguments Ar(i) will be the

appropriate area i+% . This area specification should be used for all
variables, which exhibit this “conservative” nature in contact with the
bottom . If, on the other hand, the variable in question experiences losses in
contact with the bottom, it is clear from Figure 2 that the flux leaving
control volume i —% is not the same as entering control volume i —1 at the
upper boundary. Momentum is an example of such a “non-conservative”
variable. This because of the losses at the bottom due to friction. For all
“non-conservative” variables the most reasonable choice is Ar(i) for both
i+% and i-'% when studying control volume i. This is the area
specification normally used for all hydrodynamical variables, while the heat
energy, salinity, and concentrations will normally be treated as
“conservative”.

These conclusions will now be introduced into (B 5) through the definitions:

T, = Ar(i), (i +14)/ Az(i + %) (B 6)
Ar(i)l"0 (i — %)/ Az(i - '4);if ¢ is not "conservative" N
- Ar(i —1)F¢ (i — %)/ Az(i —4);if ¢ is “conservative" ®B7)
With these expressions one may write (B 5) as.
N (05 + )= 0l -T_ (0, ()= 0, (- 1) (B 8)
Ar(t)  z(i+n) D
© [ [ [sya dz daar = ar(i)az(i)s, .o (B 9)

0 z{i-n) U

The source term will be divided into two parts, one of which contains the
variable itself. Thus:

Spee = S()+ ') (B 10)



With this definition (B 9) becomes:

Ar(i)az()A(S () +S' (0 ,) (B 11)
Collect terms (B 4), (B 8), and (B 11) and obtain:

Az(i)Ar (o () - by ()

=ML, (0,6 +1) =0, ()T (6, ()0, ( 1)) (B 12)
+ Ar()Az()ASGE) + S () ]

Which may be rearranged to:

0, (Y ar()az()+ AT, + T )— Ar(i)Az(i)acs' ()]
+ O+ = AT, )+ 0 (=1~ AT )+ &, (- 4r(D)Az(F)) (B 13)
— Ar(1)az(1)ArS (i) = 0

T D)= A0+ 1)+ BB 1)+ CE) @ 14
where:
A(i)=1, / Ar(i) (B 15)
B(i)=T_1A4r(i) (B 16)

C()= 0 (1)az(i)/ At + Az(F)S(i) (B 17)

D(i)= Az(i)/ At + (T, +T.)/ 4r(i)- Az(i)S'(i) =
= A(i)+ B(i)+ az(i)/ At - Az()S" (i)
Equation (B 14) is in a form, which is easily solved using a tri-diagonal

matrix algorithm. For a presentation of such an algorithm see for example
Spalding (1976).

(B 18)

3. Coefficients for control volumes at the boundaries
Background

Close to the boundaries the transport coefficients often vary steeply. Special
attention must therefore be paid to the coefficients in these regions. In
PROBE the coefficients are calculated with special wall functions, which
are based on logarithmic and linear laws.

In this section it will be shown how the coefficients are incorporated into the
finite difference formulation. Two different cases may be distinguished,
depending on if the value or the flux of ¢ is prescribed.



The value of ¢ is preseribed

For this boundary condition one only has to introduce the new boundary
coefficients;

B(2)=1B/ 4r(2) (B 19)
AN) =TS/ Ar(NM1) (B 20)

Where the T8 and 7S are transport coefficients at the bottomn and surface
respectively.

The flux of ¢ is prescribed
For the surface:

Ar(NM1Yy, = TS($, (NM1)- ¢, () (B 21)

where v, is flux of ¢ per unit area and time.
From {B21):

bp(N)=v,4r(NM1)/TS +¢ ,(NM1) (B22)
Substitute from this for ¢, in equation (B 14) with i = NM1

D(NM1) ,(NM1) =TS/ ar(Na11)

[y, Ar(MMA)/I TS + 8, (VM) + BNMIY , (A1 2)+ C(NM1) ®B23)

which may be written as:

D'(NM1)Y, (NM1)= A'(NM1) , (V) + B(NAT)

o(NM2)+ C'(NM1), e
where

D'(NM1)= D(NM1)—TS / Ar(NM1) (B 25)

C'(NM1)= C(NM1)-y, (B 26)

A'(NM1)=0.0 (B27)

This is the set of coefficients to be used when the flux of ¢ at the surface is
prescribed. The expressions for the bottom boundary are analogue,






APPENDIX C

THE FINITE DIFFERENCE EQUATIONS FOR THE
TWO-DIMENSIONAL STEADY OPTION.
(From Nordblom (1997)).



Before deriving the finite-difference equations, one has to decide the order
in which the equations are solved. It is assumed here that the first equation
solved at each new integration step is the horizontal momentum equation.
Thereafter, the vertical velocity component is calculated from the continuity
equation. Then, the heat equation, the turbulent kinetic energy equation and
the dissipation rate equation are solved, one after the other. Thus, after the
horizontal momentum equation has been solved and the vertical velocity
component has been obtained from the continuity equation, the velocity
field can be regarded as known when the remaining equation are solved.
This fact will be referred to below.

While the numerical scheme used in PROBE for the one-dimensional
transient case can be characterized as fully implicit, the finite-difference
equations are here derived for the general case where the level between the
fully explicit and the fully implicit scheme is expressed by a weighting
factor. It is then easy to select a specific scheme, e.g. of the Crank-
Nicholson type or of the fully-implicit type, simply by adjusting the
weighting factor.

The starting point in the derivation is the general differential equation for
two-dimensional parabolic steady flows, here written with all terms on the
left

) ] o (. .o ~
a(u¢)+§(w¢)—g(l Ej—suo (C1)

In this equation, when ¢ = pu, we get the horizontal momentum equation
and when ¢ =0,¢=k and ¢ =€, we get the heat equation, the turbulent
kinetic energy equation and the dissipation rate equation, respectively. S
denotes the source term and I denotes the vertical exchange coefficient,
corresponding to the variable ¢ .

In the Cartesian coordinate system used here, the horizontal axis is denoted
by x and the vertical axis by z. The calculation domain is divided into a
rectangular mesh and a part of this is shown in Figure 1 below. The
horizontal distance between the grid cells Ax is assumed to be constant
while the vertical distance Az can vary.

f /7S

uu U D

Figure 1. A part of the finite-difference mesh.



Equation (C 1) is to be integrated over the dashed grid cell shown in Figure
1. The direction of flow is assumed to be from left to right. With reference
to Figure 1, the letters U and D stands for Up and Down and are the limits
of integration in the horizontal direction, UU denotes the x-coordinate one
integration step upstream of x = U, the lower case letters s and n refers to
the z-coordinate of the lower and upper boundaries of the grid cell,
respectively, and are the limits of integration in the vertical direction, P
stands for the z-coordinate at the center of the dashed grid cell, while S and
N refers to the z-coordinate at the center of the adjacent grid cells below
(South) and above (North) of the grid cell considered. The arrows indicate
the actual location of the points where the velocities are calculated (the
vertical velocity is here arbitrary directed upward). The different terms in
the differential equation are divided into three groups which are integrated
separately. Group I is the horizontal convection term, group II is the vertical
convection and diffusion terms (handled together) and group III is the
source term.

Group I: The horizontal convection term.

When performing the integration over the vertical extent of the grid cell, it
is assumed that u¢ is constant with z and equal to the center point value

(u¢), . With this assumption, we get
%
“‘?—ix— (u¢) dxdz = I(u‘i’)o —(ug)ydz=Az [uP,IJ¢P,D ~Upybpy ], (C2)

where the coefficients u, , andu, , denote the horizontal wind speeds in

the cell walls at x =D and x = U , respectively.

The coefficients u,, and u,, will be determined in different ways
depending on if ¢ = pu or not. If ¢ is any of the variables 0, k or &, both
up, and u,, can be regarded as known since the horizontal wind speed is

determined from the horizontal momentum equation before the other
variables are solved. On the other hand, when ¢ = pu, u, , is unknown and

must be approximated.

One way of approximating u;, is to set u, , equal to u,, where u,, is

known from the previous integration step. The error term following from
this approximation can be determined by setting u, , =u,, + Au, where

Au is the change in horizontal wind speed between x=U and x=D.
Inserting the relation u, ,, = u,, + Au in expression (C 2), we get

AZ[UP,U¢P.D —Upybpy + Aud P.D]

Thus, the error introduced by replacing u, , by u,, is AzAu¢,, which is
equal to AzAupu,, (since ¢ =pu when the momentum equation is

solved).



A smaller error term can, however, be achieved if both u, , and u,, are
replaced by the upstream values u,,, and u,,, respectively. To see this,
we write u, , and u,; in terms of the upstream values and the change over

the horizontal grid distance Ax, according to

u‘p.U = uP,UU +A ul

Upp =Upy +4 u,

If the horizontal grid distance is constant, the change in horizontal wind
speed from x=U to x=D will be nearly the same as the change from
x=UU to x=U, ie Au,~Au =Au. Inserting the relations

Upy =Upyy +Au and u, , =u,,, + Au in expression (C 2)and recognizing

that Au($, , — 1) = pAuu, , —u,,) = p(Au)®, we get

Az [uP,U¢P.D —Up ey + (A u)Z]

In this case, provided that Awu, = Au,, the resulting error term is
Azp(A u)®. Comparing the two error terms, it is seen that the error is
reduced by the factor Au/u, , which is a significant improvement since the

change in u over the grid distance Ax is only a small fraction of the
absolute value of u, i.e. Au/u, , <<1.

If the coefficients u,, andu,, in expression (C 2)are replaced by the

symbols C', and C,,, respectively, and the error term above is dropped, we

get the following final expression for the integrated horizontal convection
term

Az I.CI)¢P,D - CU¢1’,UJ > (C 3)

where Cp =u,,, C,=uyy, if ¢=pu, and C, =u,,, C,=uy,,
otherwise. (When x=0 and ¢ = pu, we must set C,, = C, =u,,, where

U, is the prescribed velocity at the upstream boundary.)

Group II: The horizontal convection and diffusion terms.

When performing the integration over the horizontal extent of the grid cell,
it is assumed that all terms are constant with x and equal to a representative

value at x = x" € [U, D]. With this assumption, we get



For convenience, the index x" is dropped here, but will be included later in
the derivation. The expression then takes the following form

ol -[2) -, -r(2)] e

The value and the gradient of ¢ at the lower and the upper boundary of the
grid cell are now to be expressed in terms of @5, ¢, and ¢, . This will,
however, require knowledge of the variation of ¢ with z which is, of
course, unknown since the variation of ¢ in the x- and z-direction is the
outcome of the numerical solution. Instead, we must use approximate

relations for w,, (%‘f] , w, and (%J expressed in the grid point values

¢s, ¢p and ¢y .

In Patankar (1980), several methods are discussed. The simplest approach to
the problem is “The Upwind Scheme” and the somewhat more advanced
methods are variants of "The Exponential Scheme”. These schemes are
presented below.

The Upwind Scheme:

In The Upwind Scheme, the value of ¢ at a cell wall is replaced by the
upwind value and the gradient of ¢ is calculated from a central difference
approximation. Using the FORTRAN operator MAX [ ] which returns the
greater of its arguments, the convective terms w,¢$, and w¢, can be
written in a compact form according to

w0, = s MAX[w,,0]- 6y MAX[-w, 0]
Wb, = dsMAX[w,,0]- §,MAX[-w_,0]

The above expressions will always assign the upwind value to ¢ at a cell
wall, regardless of the flow direction.

The diffusive flux at the upper and lower cell walls is calculated from a
central difference approximation according to

H®) - Tt

52 —
op I
| 2| ==L —
:[&)J P—ZS (¢P ¢5)
. : r I
Introducing the variables DIF, for - and DIF, for -
Zy —2Zp Zp, — 24

expression (C 4) takes the following form



Ax[(MAX[w, 0]+ DIF, + MAX[-w, 0]+ DIF,)$, -
(MAX[~w, 01+ DIF,)$,, —(MAX[w, 0]+ DIF, )5 ]

Setting A4 = MAX[-w,,0]+ DIF, and B=MAX[w,,0]+ DIF,, we get the
final expression for the integrated convection and diffusion terms for The
Upwind Scheme

n?

Ax[(wn_ws+A+B)¢P_A¢N~B¢S] (C 5)
The Exponential Scheme and variants:

In The Exponential Scheme, an exact expression for the variation of ¢ with
z 1s derived for an idealized convection-diffusion flow; a one-dimensional
stationary flow without source terms and with constant density p and a

constant diffusion coefficient I" . The differential equation for this situation
read

2 2
W _ 90 _, 9% wab_,
oz oz? &z I &

Since this is a linear ordinary differential equation with constant
coefficients, the equation is easily solved by analytical methods. (Note that
not only I" is constant here, w is also constant in a one-dimensional flow
with constant density, from continuity reasons.) The solution in the interval
[ZP,ZN], subject to the boundary conditions ¢(z,)=¢, and ¢(z,)=¢,

becomes

exp( (2 2,)) -1
o(z)=¢p +(dy —9,) - ’ZG[ZP’ZN] (C6)
exp(F(zN -zp)) -1

By differentiating this function, we get

exp(—e(z - z,))
gg_(z)z(d’/v “@1')% wr g ZE[ZP’ZN] (C7)
exp(F(ZN ~ %)) —1

The functional relationships for the value and the gradient of ¢ in the
interval [zs,z ,] will be analogous, all indices N are just replaced by P and
PbyS.

Since the actual flow is two-dimensional with a non-zero source term (in
general) and a variable diffusion coefficient, we do not expect the analytical
functions to be exact for the flow considered. From these functions we can,



however, probably do the best assumption possible regarding the value and
the gradient of ¢ at the cell walls.

Thus, we insert the functions (C 6) and (C 7) for a z-coordinate in the
inierval [zf,,z ] and the corresponding functions for a z-coordinate in the

interval [z,,2, ], in expression (C 4). After some manipulations, we get

0o =0n .\ _ bs 0y
Ax{w”(% +exp(f’,§r’pn)-1) w (g, + exp(ﬁ!px)"l)} . (C8)

where P, and P, are the Peclet numbers at the upper and lower walls of the

grid cell, respectively. The Peclet numbers express the relative strength of
convection and diffusion at the cell walls and are defined according to

j) - pnwn(z.’e‘ —qzl‘) — pnw'n
” I DIF,

r n

p s ao_;w.s‘(z)" —zS) = pgws
0 r, DIF,

R X

where, as before, the variables DIF, and DIF, stand for e and

-, respectively.
Zp—2Zg

By factoring out ¢, , ¢, and ¢ in expression (C 8), we get

w w

+ ,S — My ~
exp(F,/ p,) -1 exp(P,/p,)-1

W,
@ sy

]

M[(wn +

exp(P /p Y= 1)¢"

The above expression can be simplified to the same expression as (C 5) by
defining the coefficients 4 and B according to

W . blp,

n

D n = =
exp(P /p,)-1 exp(F, /1 p,)—1

B=w, +om—te = DIF,(F,/p, + ~-—-’p€~—~>
exp(F,/p,)-1 xp(£,/py)-1

With these definitions, the integrated convection and diffusion terms for The
Expenential Scheme become

Axl(w, —w, + A+ B)p, — 4D, ~ Bo, |



Following Patankar (1980), 4 and B will now be approximated by
polynomial functions. There are two reasons for doing that; the polynomials
are somewhat less expensive to compute than the exponentials, and they are
well-defined and equal to the limit value of 4 and B at the point P/p =0.

From these approximate functions, we get "The Hybrid Scheme” and “The
Power-law Scheme”, (Patankar, 1980).

In The Hybrid Scheme, 4 and B are approximated by piecewise linear
functions according to

A= DIF, 'W[—Pn/pn,l—ﬁgﬁ,o} =AMX[~W,.,DIF,, = t ,0}

W.Y

/
B = DIF, -MAX[P.\. /p.d +55"—f,0} = W[ws,m& +-7,0}

In The Power-law Scheme, 4 and B are approximated by a Sth-degree
polynomial for P/p e [—10,10] and linear functions outside this interval.
The definitions read

A= DIF, . (Max|(1-0.1.|P, / p,|)* 0|+ MAX[- P, / p,,0]) =
= MAX|DIF,(1-0.1-|w, / DIF,))* 0]+ M4X[-w,.0]

(C9)

B = DIF, -(MAX|(1-0.1-|P, / p,|)? 0]+ MAX[P./ p, 0]) =
= MAX[DIF,(1-0.1-w, / DIF,))* 0]+ MAX [w, 0]

(C10)

To sum up, it is recognized that the difference between the schemes
presented, lies in the coefficients 4 and B. In The Upwind Scheme, 4 and B
have the simplest form. The Exponential Scheme and its variants are
somewhat more complicated, but are believed to perform better than The
Upwind Scheme. As is pointed out in Patankar (1980), for high lateral flow
(large values of the Peclet number), the gradient of ¢ will become very

small, making the diffusive flux negligible. For this case, The Upwind
Scheme has the drawback that it overestimates the diffusion since it always
calculates the diffusion from a central difference approximation. In the other
schemes where the coefficients 4 and B are functions of the Peclet number,
the influence from diffusion at large values of the Peclet number is reduced
automatically. It is true that all schemes will produce the same result when
the grid distance is made small enough since a finer grid will also reduce the
Peclet number. From a computational point of view, we should, however,
choose a method that produces reasonable results also with a course grid.
Thus, the scheme to be suggested here is The Hybrid Scheme or The Power-
law Scheme. It is probably quite arbitrary which one is chosen. Following
the recommendation in Patankar (1980), The Power-law Scheme will be
used, with 4 and B from equation (C 9) and equation (C 10).

Now, introducing the index x e[U,D] that was dropped earlier, the
expression (C S) (valid for all schemes) become



Axl(w, ~w,+ A+ B)p, .~ A9, . ~Bp, .| (C11)

The value of ¢ at x=x", will now be expressed in terms of the old value

from the previous integration step at x =U and the new value from the
current integration step at x =D according to the linear relation
¢.=(0~ /), +fb,. When f =0, we get the so called fully explicit

scheme while /'=0.5 and f/ =1 lead to the Crank-Nicholson scheme and
the fully implicit scheme, respectively.

Inserting the relation, ¢ . =(1- /)¢, + /¢, inexpression (C 11), we get the
following final expression for the integrated convection/diffusion term

Ax((w, =w, + A+ B)(1~ /), + [p5] -

(C 12)
A=y + fn 1= Bl sy + fs5.5]]

Group III: The source term.

When performing the integration over the vertical extent of the grid cell, it
1s assumed that the source term S is constant with z and equal to center point

value S, . In the integration over the horizontal extent of the grid cell, it is
assumed that S, is constant with x and equal to a representative value S, .

at x=x € [U ,D]. Also, to prepare for situations where the source term is a
function of ¢, we use a linear expression for this dependence according to
Sp=SI+SIP$, ., where SI and SIP are coefficients. With these

assumptions, we get

[ [Sdzdx = Az [S,dx = AxazS,, . =Axaz(SI +SIPY,, )

X z X

Inserting the relation, ¢ . =(1- /)¢, + /@, in the expression above, we get

AxAz(ST +SIPI( = )by + fbr) C13)

Now, adding together expression (C 3), (C 12) and (C 13), we arrive at the
final finite-difference equation for two-dimensional parabolic flows. The
equation read

l:% Cp+(w,—w, +4+ B)f - AZS[Pfild’/’,p = Af()bN,D + Bf¢s,u +
by 0w, A B Db + A= iy +

B(1— 1), , +42(SI+SIP(-1)9,, )]

or

D,¢P,D = A,¢N,I) +B,¢s,p +Cs (C 14)



where
! Az ! ’
D :[ZECD+(W"_WI+A+B)f—AZS]Pf]’A =Af,B=Bf and

C'zli% Py — W, =w, + A+ BY1 = ),y + AQ=Nuy +

BO- 1), +A2(SI+SIP(- )b, )]

Calculation of the vertical velocity:

The vertical velocity at the cell boundaries is obtained from the continuity
equation applied to each grid cell after the horizontal momentum equation
(giving the horizontal velocities) has been solved. With reference to the
dashed grid cell in Figure (1) and assuming constant density, the continuity
equation gives

Ax(w, ~w,) = Az(upy —Upp)

Solving for the vertical velocity at the upper wall of the grid cell, w,, we
get

Az
w=w +—(u,, —u C15
n s Ax( PU P,D) ( )

At a solid wall, the vertical velocity is known and equal to zero. Assuming a
solid wall at the lower boundary, the vertical velocity at the upper wall of
each grid cell in the finite-difference mesh can be determined by iterating
equation. (C 15) through all the grid cells from bottom to top.



APPENDIX D

LISTING OF THE CODE



PROGRAM PROBE9S7

C

e oroolooKORE 3 eooRoOROKORROR R Bk o e ke sk oo XKk ke ok sk lOK KK KK Sk 3k KF K ROKK KK KOO ok
C CODE NAME: PROBE97

C HOHOKOK 5 3 2 oKOK

C

C  PC-VERSION:

C KON 3 3 3 KOOk i

C

C DEVELOPED BY: URBAN SVENSSON
C 3 o 4 0O OROROK & % K

C

C DOCUMENTATION:

C 3 3 3 200K N OO e  k

C

C COMMENTS:

C Ok K 3 HOK HOK

C

O AORKE ORI RO 3 6 KRR AIOROK A K o 3 RHOKOR KRR 6 36 R R KROKORHOKROKR KRR ROKOK 3 3 ¥
CRHRRARR IR AR R H K MATN PROGRAM ¥k ok e ok ok 48 435 0OKOKOK R AHOKOROK K K

C

INCLUDE ’comp97.inc’
C

DIMENSION ISTORE(NSTORE,NPM)
C
C = -
CHAPTER1 1 11 1 1 DATAl1 11111111111
C

CALL DFAULT
CALL CASE(l)
IF(NPROBE.EQ.1) GOTO 200
CALL STORE('W’,JPROBE,NSTORE,NPM,ISTORE,NSTOR,NSTOR?2)
100 IPROBE=IPROBE+1
CALL CASE(1)
CALL STORE('W’,IPROBE,NSTORE,NPM,ISTORE,NSTOR I,NSTOR2)
IF(IPROBE.LT.NPROBE) GOTO 100
CALL STORE(R’,1,NSTORE,NPM,ISTORE,NSTOR 1, NSTOR?2)
IPROBE=1
C--
CHAPTER 2 2 2 2 2 2 GRID AND GEOMETRY?2 22222222
C
200 CONTINUE
C-----VERTICAL GRID DISTRIBUTION

C
CALL GRID
C
C-----AREA VESUS DEPTH
C
IF(INDARE.NE.4) CALL AREAD
C
[ -

CHAPTER 3 3 3 3 3 3 STARTING VALUES 33333333
C
C-----INITIALISE DEPENDENT VARIABLES

IF(ISTPR.NE.1) GOTO 300

DO 32 J=1,NJM

DO 33 I=2,NM1

IF(Z(I).LE.ZST1(J)) F(I,J)=VST1Q)



IF(Z(I).GT.ZST1(J))
1 F(L))=VST1(J)+(Z(D)-ZST1(J))*(VST2(J)-VSTI(J))
2 [(ZST2(J)-ZST1(J)+TINY)
IF(Z(1).GE.ZST2(J)) F(,J)=VST2(J)

33 CONTINUE

32 CONTINUE

300 CONTINUE

C-----INITIALISE OTHER VARIABLES

C
DO 30 I=1,N
RHO(I)=RHOREF*(I.-C1RHO*(F(L,JTE)-TREF)*(F(I, ) TE)-TREF)+
1C2RHO*F(I,JS)+C3RHO*F(I,JC1)+C4RHO*F(I,JC2)+
2CSRHO*F(I,JC3)+C6RHO*F(1,JC4))
F(LJTE)=F(I,JHYRHO(I))CPHEAT
EMU(I)=EMULAM
IF(F(LJK).LE.FKMIN.OR .F(I,)D).LE. FDMIN) THEN
F(LJK)=FKMIN
F(I,JD)=FDMIN
ENDIF
IFATURBM.EQ.4) GOTO 31
F(I,JEMU)=RHO(I)*CD*F(I,JK)*F(L,JK)/(F(1,JD)+TINY)+EMTMIN
IFITURBM.EQ.1) F(I,JEMU)=EMUCON

31 CONTINUE

30 CONTINUE
IF(ITURBM.EQ.1.OR.ITURBM.EQ.4) IPRSC=1

C
CALL OUTPUT
CALL CASE(4)

IF(NPROBE.EQ.1) GOTO 302
IF(IPROBE.EQ.NPROBE) GOTO 301
CALL STORE('W’,IPROBE,NSTORE,NPM,ISTORE,NSTOR I,NSTOR2)
IPROBE=IPROBE+1
CALL STORE('R’,IPROBE,NSTORE,NPM,ISTORE,NSTOR1,NSTOR?2)
GOTO 200

301 CONTINUE
CALL STORE(’'W’ IPROBE,NSTORE,NPM,ISTORE,NSTOR ,NSTOR2)
CALL STORE('R’,1,NSTORE,NPM,ISTORE,NSTOR |,NSTOR2)
IPROBE=1

302 CONTINUE

Q= - e em——————

CHAPTER4 4 4 4 4 4 STEPCONTROL 4 4 4 4 4 4 4 4 4 4

C

ITIME1=1
ITIME2=2
NSTEP=INT(TFRAC(I))
DT=TFRAC(2)
NUMB=|{
ISTPDT=1
DO 40 I=1,NPM
IF(NSTPDT(I).EQ.1) THEN
INDEXP=I
GOTO 41
ENDIF

40 CONTINUE

41 CONTINUE

C

400 CONTINUE
IF(IPROBE.NE.INDEXP) GOTO 402



IF(NUMB.LE.NSTEP) GOTO 401

ITIME1=ITIMEI +2
ITIME2=ITIME2+2
NUMB=1

NSTEP=INT(TFRAC(ITIME1))

401 CONTINUE
NUMB=NUMB+1
C
402 CONTINUE

DT=TFRAC(ITIME2)/NSTPDT(IPROBE)

TIME=TU+DT
C-ev-- - .

CHAPTER S 5 5 TIMEDEPENDENT BOUNDARY CONDITIONSS 5§ 5555 5

C
DO 50 J=1,NF

IF(NOT.SOLVAR(J)) GOTO 500
IF(ITRHZ(J).NE.2) GOTO 501

IF(TIME.LE.V4HZ(J)) VALUE=

F V1HZ(J)+(V2HZ())-V1HZ(J))*TIME/V4HZ(J)
IF(TIME.GT.V4HZ(J)) VALUE=

F V2HZ(J)+ V3HZ(J)*SIN(2.*PI*(TIME-V4HZ(1))/VSHZ(J))
IF(IKBHZ(J).EQ.I) F(N,J)=VALUE

IF(IKBHZ(J).EQ.2) FLUXHZ(J)=VALUE

C

501 IF(ITRLZ(J).NE.2) GOTO 502
IF(TIME.LE.V4LZ(J)) VALUE=

F VILZ(J)+(V2LZ(J)-V1

LZ(J))*TIME/V4LZ(J)

IF(TIME.GT.V4LZ(J)) VALUE=
F V2LZ(J)+V3LZ(J)*SIN(2.*PI*(TIME-V4LZ(J))/V5LZ{))
IFIKBLZ(J).EQ.I) F(1,J))=VALUE

IF(IKBLZ(J).EQ.2) ELUXLZ(J)=VALUE

502 CONTINUE
500 CONTINUE
50 CONTINUE
C

CALL CASE(2)

C-----IN- AND OUTFLOWS

C --CALCULATE VOLU

ME FLUX ALONG Z-AXIS

TESTQ=ABS(QINFL(NM1))+ABS(QOUTFL(NMI))
IF(TESTQ.GT.TINY. AND.MOVE) THEN
WRITE(6,*)' WARNING IN- OR OUT-FLOW IN CELL NM1’

ENDIF
DO 51 I=2,NMI

QZ(1)=QZ(I-1)+QINFL(I)-QOUTFL(I)

51 CONTINUE
QZ(N)=0.

QSURF=QZ(NM1)-PREEVA*AREA(NM1)

IF(IMOVE) CALL SURF
IF(ABS(QSURF).GT.TINY.AND..NOT.MOVE)THEN
WRITE(6,*)’ WARNING IN-AND OUTFLOW NOT IN BALANCE.
1QSURF=',QSURF,"M3/§’

ENDIF
C--- —

CHAPTER 6 6 6 6 6 6 ADVANCE6 6 6 6 6 6 66 6 6 66

C
CALL COMP
C



C---

CHAPTER7 77 777 COMPLETE?7 7777777717177

C

C-----PROPERTIES

71

DO 701=1,N
RHO(I)=RHOREF*(1.-C IRHO*(F(I,J TE)-TREF)*(E(I,JTE)-TREF)+
1C2RHO*E(1,]S)+C3RHO*F(I,JC1)+C4RHO*E(I, JC2)+
2CSRHO*E(I,JC3)+C6RHO*F(I,JC4))
F(LJTE)=F(I,JHYRHO(I))CPHEAT

IF(ITURBM.EQ. 1.OR.ITURBM.EQ.4) GOTO 71
IF(F(1,JK).LE.FKMIN.OR.F(1,JD).LE.FDMIN)THEN
F(1,JK)=FKMIN

F(1JD)=FDMIN

ENDIF

F(I,JEMU)=CD*RHO(I)*F(1JK)*F(I JK)(F(LJD)+TINY )+EMTMIN

CONTINUE

70 CONTINUE

C
C

C

TU=TIME

IFASTPDT.EQ. DISTEP=ISTEP+1

C

CHAPTER 8 8 8 8 PRINT8 8 8 8 8 8 8 8 8 8

IF(ISTPDT.EQ.NSTPDT(IPROBE))THEN
CALL CASE®4)
CALL OUTPUT

ENDIF

CHAPTER 9 9 9 9 DECIDE9 9 9 9 9 9 9 9 9 9

C

IFISTEP.LT.LSTEP.AND.TU.LT.TLAST) GOTO 901
IF(IPROBE.EQ.NPROBE.AND.ISTPDT.EQ.NSTPDT(IPROBE)) THEN
CALL STORE('W’,IJPROBE,NSTORE,NPM,ISTORE,NSTOR 1,NSTOR?2)
GOTO 900

ENDIF

901 CONTINUE

IF(NPROBE.EQ.1) GOTO 902
IFISTPDT.LT.NSTPDT(IPROBE)) THEN
ISTPDT=ISTPDT+I

GOTO 402

ELSE

ENDIF

ISTPDT=I

CALL STORE('W’,IPROBE,NSTORE,NPM,ISTORE,NSTOR I,NSTOR?2)
IPROBE=IPROBE+1

IF(IPROBE.GT.NPROBE) IPROBE=I

CALL STORE(CR’,JPROBE,NSTORE,NPM,ISTORE,NSTOR |, NSTOR?2)

902 CONTINUE

GOTO 400

900 CONTINUE

C

DO 90 IPROBE=I,NPROBE

CALL STORE('R’,IPROBE,NSTORE,NPM,ISTORE,NSTOR 1,NSTOR?2)
IFIN=2

CALL OUTPUT

90 CONTINUE



o END MAIN PROGRAM

(C ko koK 3OO ok oK oRoR ROk Rk HoROK ROk 33ROl OloR 30k ok ko ok 3ok ok Fok ook o

SUBROUTINE STORE(CHAR,INDEX,NSTRE,NPRM,ISTORE,NSTR1,NSTR2)
C**lllﬂl*lllllllll*****lllt****t#***lll******#**************t******#***#**********
C

DIMENSION ISTORE(NSTRE,NPRM)

CHARACTER*1 CHAR
C

COMMON IA1(9804)

COMMON/COM2/1A2(107)

C
N1P1=NSTR1+1

IF(CHAR.EQ.’R’) GOTO 1000
C----WRITE

DO 100 I=1,NSTR1
100 ISTORE(LINDEX)=IAI(I)

DO 102 I=NIPI ,NSTRE
102 ISTORE(L,INDEX)=IA2(I-NSTR1)

RETURN
C
1000 CONTINUE
C----READ

DO 101 I=1,NSTR1
101 IA1(I)=ISTORE(],INDEX)

DO 103 I=N1P1,NSTRE
103 1A2(I-NSTR1)=ISTORE(I,INDEX)

RETURN

END
C
C

C FricioroRckk o AoRRoR kAR AR Aok KOk KKK ORI MK oloR ko K KR kK ok K ok

SUBROUTINE GRID
C 3 3 3 3 3 Ok 3 N 3 OK 30k 3 3ok ok OROROK 3 38 R 3 3 30K 30k 3 3 ko3 3 3 3 3 R0KON ook 33k sk ok ok ok ok aokok ok doOK koK 3k
C

INCLUDE ’comp97.inc’
C

IF(ISTEP.EQ.0) THEN

NMI1=N-1

NM2=N-2

ENDIF

IF(IGRID.NE.1) GOTO 100
C-----UNIFORM GRID
DZ1=ZDIM/FLOAT(NM2)
DO 10 I=2,NM1
DZCELL(I)=DZ1
10 CONTINUE
100 IF(IGRID.NE.2) GOTO 101
C-----EXPANDING GRID FROM LOW Z
DZCELL(2)=ZDIM*(CEXPG-1.)/(CEXPG**NM2-1.)
DO 11 =3 NM1
DZCELL(I)=CEXPG*DZCELL(I-1)
11 CONTINUE



101 IF(IGRID.NE.3) GOTO 102
C-----EXPANDING GRID FROM HIGH Z
DZCELL(NM 1)=ZDIM*(CEXPG-1.)/(CEXPG**NM2-1.)
DO 12 I=NM2,2,-1
DZCELL(I)=CEXPG*DZCELL(I+1)
12 CONTINUE
102 CONTINUE
C-----IGRID=4 INDICATES THAT DZCELL IS GIVEN IN CASE
C-----CALCULATE Z-VALUES
Z(1)=0.
7(2)=0.5*DZCELL(2)
DO 13 I=3,NM1
Z(1)=Z(1-1)+0.5%(DZCELL(L- 1)+DZCELL(I))
13 CONTINUE
Z(N)=ZDIM
C-----CALCULATE OTHER CONTROL VOLUME PARAMETERS
ZBOUND(1)=0.
DO 14 [=2,NM1
DZ(1)=Z(1+1)-Z(I-1)
RECDZ(I)=1/DZ(I)
ZBOUND(I)=ZBOUND(I-1)+DZCELL(I)
14 CONTINUE
RETURN
END
C
C

C*****#***********************t*##*lk********#**********#**************

SUBROUTINE AREAD
o HOK AR KKOIOR KOOI KKK RO HOKK KKK K K k0K FOIOIICK kKR kK K KOOk
C
INCLUDE ’comp97.inc’
C
IF(INDARE.NE. I) GOTO 200
C-----UNIFORM AREA-DISTRIBUTION

DO I0 I=1,N
AREA(I)=AREAHZ

10 CONTINUE
AREA(1)=0.
RETURN

C-----LINEAR AND NON-LINEAR DISTRIBUTIONS

200 CONTINUE
IF(INDARE.EQ.2) CEXPA=1.
DO 20 I=2,NM1
AREA(I)=(Z(I/Z(N))**CEXPA*AREAHZ

20 CONTINUE
AREA(1)=0.
AREA(NM1)=AREAHZ
AREA(N)=AREAHZ
RETURN
END

C

C
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SUBROUTINE SURF
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C



INCLUDE ’'comp97.inc’

LOGICAL STOGEO(NPM),FLAGDZ(NPM)
DIMENSION UUZSR(NPM,NIM),UUDZR(NPM,NIM),UUZBR(NPM,NIM)
DATA STOGEO/NPM* TRUE./

IF(ISTEP.EQ.0) THEN
IF(STOGEO(IPROBE)) THEN
DO 10 I=1,N
UUZSR(IPROBE,1)=Z(I)
UUDZR(IPROBE,])=DZCELL(])
UUZBR(IPROBE,)=ZBOUND(I)

10 CONTINUE
FLAGDZ(IPROBE)=.FALSE.
STOGEO(IPROBE)=.FALSE.

ENDIF
DO 12 I=1,N
ZSREF(1)=UUZSR(IPROBE,])
DZCREF(I)=UUDZR(IPROBE,])
ZBREF(I)=UUZBR(IPROBE,])
12 CONTINUE
C
C
ZDIM=ZSSTRT
DO 11 [=2,N-1
IF(ZBREF(I).GE.ZDIM)THEN
NTEST=I
GOTO 13
ENDIF
NTEST=I+1
11 CONTINUE
13 CONTINUE
IF(NTEST.GE.N)THEN
WRITE(6,’(A,1P2E12.3)’)’ZMAX, S.L. =,ZBREF(N-1),ZDIM
STOP * SURFACE TOO HIGH IN SURF’
ENDIF
N=NTEST+1
NM1=N-1
NM2=N-2
DZCELL(NM1)=ZDIM-ZBREF(NM2)
IF(FLAGDZ(IPROBE))THEN
N=N-1
NM1=N-1
NM2=N-2
DZCELL(NM1)=ZDIM-ZBREF(NM2)
ENDIF
ZBOUND(NM1)=ZDIM
Z(N)=ZDIM
Z(NM1)=ZDIM-0.5*DZCELL(NM1)
RECDZ(NM1)=1./(Z(N)-Z(NM2))
ENDIF
C-----END OF ISTEP=0
C-------CALCULATE MOVEMENT OF FREE SURFACE

DELTAZ=QSURF*DT/AREA(NM1)
ZNEW=ZDIM+DELTAZ
IF(QSURF.LT.0.) GO TO 30



C------ A RISING SURFACE

ZLIMIT=ZBREF(NM 1)+0.2*DZCREF(N)
IF(ZNEW.LT.ZLIMIT) GO TO 40

C -- CHANGE NUMBER OF ACTIVE CELLS.
N=N+1
NMI=N-1
NM2=N-2
DZCELL(NM1)=(QSURF*DT-(ZBREF(NM2)-ZBOUND(NM2))* AREA(NM2))
1/AREA(NM1)
ZDIM=ZBREF(NM2)+DZCELL(NM1)
Z(NM2)=ZSREF(NM2)
ZBOUND(NM2)=ZBREF(INM?2)
DZCELL(NM2)=DZCREF(NM2)
Z(NM1)=ZDIM-0. 5*DZCELL(NM1)
RECDZ(NM2)=1./(Z(NM1)-Z(N-3))

C --PROPERTIES FOR NEW ACTIVE CELL
DO 20 JLOC=1,NFP2
F(N,JLOC)=F(NM2,JLOC)
F(NM1,JLOC)=F(NM2,JLOC)

20 CONTINUE
GO TO 50
30 CONTINUE
[ QR A SINKING SURFACE

ZLIMIT=ZBREF(NM2)+0.2*DZCREF(NM1)
IF(ZNEW.GT.ZLIMIT) GO TO 40

C ---CHANGE NUMBER OF ACTIVE CELLS.
VOL1=DZCELL(NM1)*AREA(NM1)
VOL2=DZCELL(NM2)*AREA(NM2)
N=N-1
NMI1=N-1
NM2=N-2
DZCELL(NM1)=DZCREF(NM 1)+(ZDIM-ZBREF(NM]1))
I*AREA(N)/AREA(NM 1)+QSURF*DT/AREA(NM1)
ZDIM=ZBREF(NM?2)+DZCELL(NM1)
Z(N+1)=ZSREF(N+1)
DZCELL(N)=DZCREF(N)
ZBOUND(N)=ZBREF(N)
RECDZ(N)=1./(ZSREF(N+1)-ZSREF(NM1))

C--- PROPERTIES FOR CELL NMI(MIXING IN PROPORTION TO VOLUMES)
VOL3=-DT*QSURF+DZCELL(NM)*AREA(NM1)
DO 31 JLOC=1,NFP2
F(NM1,JLOC)=(F(N,JLOC)*VOL 1+F(NM1,JLOC)*VOL2)/VOL3
F(N,JLOC)=F(NM1,JLOC)
F(N+1,JLOC)=0.

3] CONTINUE
GO TO 50
40 CONTINUE
C-----NUMBER OF ACTIVE CELLS NOT CHANGED.

ZDIM=ZNEW

IF(DELTAZ.GT.0.) THEN

DO 41 JLOC=1,NFP2

F(NM1,JLOC)=(F(NM1,JLOC)*DZCELL(NM 1)+

1 F(NM2,JLOC)*DELTAZ)/(DZCELL(NM1)+DELTAZ)
41 CONTINUE

ENDIF

DZCELL(NM 1)=DZCELL(NM1)+DELTAZ



50 CONTINUE
C-----CHANGES COMMON T#® ALL SITUATIONS.

ZBOUND(NM1)=ZDIM
RECDZ(NM1)=1/(ZDIM-ZSREF(NM2))
Z(N)=ZDIM
Z(NM1)=ZDIM-0. 5*DZCELL(NM1)
IF(ISTEP.EQ.LSTEP-1)THEN
IF(DZCELL{NM1).GT.DZCREF{NM1))THEN
FLAGDZ(IPROBE)=.TRUE.
ELSE
FLAGDZ{IPROBE)=.FALSE.
ENDIF
ENDIF
RETURN
END

oNeKe!
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SUBROUTINE PEA )
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C
INCLUDE ’comp97.inc’

C

DIMENSION A(NIM},B(NIM),C(NIM),D(NIM)
C-----PEA-ALGORITM
C

CALL BOUND(,TLZ}
J=JRHOV
CALL BOUND(},TLZ)
CALL BOUND(N,THZ)
C --AANDB
DO 10 I=2,NM2
A{D=DIFREF(I)
B(I+1}=A(I)
10 CONTINUE
NLIMIT=NM1
IF(MOVYE) NLIMIT=NM2
DO 11 =2, NLIMIT
A(D=A(D+AMAX1(0.,-QZ(D)YAREA(D}
B({l+D=B(I+ )+ AMAX1(#..QZ(I))/AREA(I+1)
11 CONTINUE
B(2)=TLZ
A(NM1)=THZ
C --CANDD»
DO 12 1=2,NM1
DCDT=DZCELLA(T)/DT
D(I)=A(1}+B(I)+DCDT
C(DH=F(LJRHOV)*DCDT-DZCELL{Iy*DPDY (I)
12 CONTINUE
DO 13 I=2,NLIMIT
D(D=D{D)+(QZM)-QZ(1-1))YAREA(I}+QOUTFL({IVAREA(I)
C(I=C(O)+PHIIN(LI*QINFL(IYAREA(I)
I3 CONTINUE
IFIKBLZ(J}.EQ.1) GOTO 100
B(2)=4.
C)=C(2»+FLUXLZ(]}
D(2)=D(2)-TLZ



100 IF(IKBHZ(J).EQ.1) GOTO 101
A(NM1)=0.
C(NM1)=C(NM 1)-FLUXHZ(J)
D(NM1)=D(NM1)-THZ

101 CONTINUE
DO 14 I=2,NM1
DAF=A()*F(I+1,JRHOV)+B(I)*F(I-1,JRHOV)+C(I)
SI()=SI(1)+CORI/D(I)*DAF
SIP(I)=-CORI**2*DZCELL(I)/D(I)

14 CONTINUE

C
J=JRHOU

C
RETURN
END

C

C

CH ko ooOoR KKKk sk top s eatokok okoloR okokokkokokoR ookl bk ok ok dof ok kol R ok ok Sokok ROk KoKk R

SUBROUTINE DFAULT
C**********************************************************************
C

INCLUDE ’comp97.inc’

C
C ---DATA NOT TO BE ALTERED BY USERS

NF=NJM

NFP2=NJMP2

IDIMF=NIM

TU=0.

ITEST=I

IPROBE=1

DO 1 JK=1,NIM

SI(JK)=0.

SIP(IJK)=0.

DIF(1JK)=0.

DIFREF(1JK)=0.

1 CONTINUE

TINY=1.E-15

GREAT=I.E15

PI=3.1416

ISTEP=0

IFIN=1
C*************************************************************
C*++**GROUP 0. TYPE OF FLOW
C ITYPEF=INDEX FOR TYPE OF FLOW

C =1 GIVES 1-D TRANSIENT FLOW (DEFAULT)
C =2 GIVES 2-D PARABOLIC FLOW
ITYPEF=I

Ok 3 okl RO K R K R RROR R ORI IOROR R ok of ok ok otk sk ok ke ke kb ke &

C¥***x*GROUP 1. GRID IN SPACE AND TIME
C-----N=NUMBER OF GRID CELLS PLUS 2. MAXIMUM=NIM.
N=NIM
TIME=0.
TLAST=1.E10
LSTEP=10
C-----GRID DISTRIBUTION IN SPACE
C-----IGRID=INDEX FOR GRID
C =1 GIVES UNIFORM GRID
C =2 GIVES EXPANDING GRID FROM LOW Z
C =3 GIVES EXPANDING GRID FROM HIGH Z



C =4 INDICATES THAT THE GRID IS SPECIFIED IN CASE
C ----SEE MANUAL FOR DETAILS OF THE EXPANDING GRID

IGRID=1

CEXPG=1.1

DO 11 UK=1,NIM

DZCELL(IJK)=0.

11 CONTINUE

C-----TIME STEP VARIATION
C A VARIABLE TIME STEP IS SPECIFIED BY THE TFRAC FIELD
C  TFRAC/10.,1.2#8.2.,16%0./ GIVES A TIME STEP OF 1.0 8
C  THEFIRST 10 STEPS FOLLOWED BY 200 OF 2.0} S.
C A CONSTANT TIME STEP IS OBTAINED BY SPECIFYING TFRAC(2)
C INCASE.

DO 12 IK=1,20

TFRAC(IIK)=#.

12 CONTINUE

TFRAC(1)=1.E8
C**********#***#***********k#*************iz**##***
C*++++GROUP 2, PHYSICAL DIMENSIONS

XDIM=1.E1®

YDIM=1.E10

ZDIM=1 E18
C-----VERTICAL AREA DISTRIBUTION

C-----INDARE=INDEX FOR AREA-DISTRIBUTION
C----- =] INDICATES UNIFORM AREA
C----- =2 INDICATES LINEAR DISTRIBUTION
C-renm =3 INDICATES NON-LINEAR DISTRB.,SEE MANUAL
C----- =4 DISTR. SPECIFIED IN CASE
INDARE=1
AREAHZ=1.0
CEXPA=2.
AR A A AR AR A A AR B KA A KSR RO R ARk A R A R
C**»**%GROUP 3. DEPENDENT VARIABLES
F(1,JRHOU)=X-DIRECTION MOMENTUM
F(LIRHOVY)=Y-DIRECTION MOMENTUM
F(ILJH)=HEAT-ENERGY
F(1,JS)=SALINITY
F(1,JK)=TURBULENT KINETIC ENERGY
F(1,JD)=DISSIPATION OF TURBULENT KINETIC ENERGY
F(L,LJCI)=CONCENTRATION NO.I
F(I,JC2)=CONCENTRATION NO.2
F(LJC3)=CONCENTRATION NO.3
F{1,JC4)=CONCENTRATION NO.4
F({1,10+(NIM-10))=ADDITIONAL VARIABLES ACTIVATED FOR NIM>1Q.
F(LJEMU)=DYNAMICAL EDDY VISCOSITY
F(LJTE)=TEMPERATURE
JRHOU=I
JRHOV=2
JH=3
JS=4
JK=5
ID=¢
IC)=7
JC2=8
JC3=9
JC4=18
DO 31 IJK=1,NJM
SOLVAR{JK)=.FALSE.

o000



31 CONTINUE

JEMU=NIJMP1

JTE=NJMP2
C#****#******t*#***********************************
C****+GROUP 4. PROPERTIES

CPHEAT=4190.

RHOREF=1000.

EMULAM=0.0013

DO 41 JK=1,NJM

PRL(IJK)=1.

41 CONTINUE

PRL(3)=9.5

PRL(4)=1000.

AGRAV=9.81
C****************i***********************************
C*****GROUP 5. EQUATION OF STATE
C-----RHO=RHOREF*(1 .-C1RHO*(T-TREF)**2+C2RHO*S
C  +C3RHO*JC1+C4RHO*JC2+CSRHO*JC3+C6RHO*IC4)

CIRHO=7.18E-6

C2RHO=8.E-4

TREF=3.98

C3RHO=0.

C4RHO=0.

CSRHO=0.

C6RHO=0.
C********************t***************t****************
C***+**GROUP 6. TURBULENCE MODEL
C-----ITURBM=INDEX FOR TURBULENCE MODEL

C----- =] GIVES CONSTANT VALUE (=EMUCON)
C----- =2 GIVES K-E MODEL
C----- =3 GIVES K-E MODEL WITH BUOY ANCY EFFECTS

[o R =4 INDICATES THAT F(I,JEMU) IS SPECIFIED IN CASE
C-------IPRSC=INDEX FOR TURBULENT PRANDTL/SCHMITH NUMBER
C USED FOR HEAT,SALINITY AND CONCENTRATIONS
C =1 INDICATES THAT CONSTANT VALUES ,GIVEN BELOW,
C ARE USED.
C =2 INDICATES THAT THE NUMBERS ARE AFFECTED
C BY BUOYANCY.NOTE:SHOULD ONLY BE USED WITH
C ITURBM EQUAL TO 2 OR 3.
IPRSC=2
ITURBM=3
EMUCON=0.
DO 61 JK=1,NJM
PRT(UK)=1.
61 CONTINUE
PRT(5)=1.4
PRT(6)=1.3
C-----CONSTANTS IN TURBULENCE MODEL. SHOULD NOT BE CHANGED.
CD=0.09
RTCD=0.3
CD75=0.164
Cl=1.44
C2=1.92
C3=0.8
C1PR=0.63
C2PR=0.13
C3PR=0.063
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Cx****GROUP 7. SOURCE TERMS



C
C----CORIOLIS PARAMETER
CORI=1.E-4
C---~-PRESSURE GRADIENTS
INDPX=INDEX FOR PRESSURE GRADIENTS IN X-DIRECTION
=1 GIVES PRESCRIBED CONSTANT PRESSURE
GRADIENTS ,DPDXP.
=2 GIVES PRESCRIBED MASSFLOW .RHOUP,ONLY
RELEVANT FOR STEADY STATE PROBLEMS,
=3 GIVES PRESSURE GRADIENT DEVELOPMENT ACCORDING TO
HORIZONTAL EXTENT OF WATERBODY.ONLY RELEVANT TG
LAKES AND RESERVOIRS.
=4 INDICATES THAT THE PRESSURE GRADIENTS ARE TO BE
READ FROM SEPARATE FILE AS A TIME SERIES.
=-1,-2,-3 OR -4 AS ABOVE,BUT WITH BUOYANCY DAMPING
OF PRESSURE GRADIENTS(EFFECT OF TILTED TERMOCLINE}.
INDPY=SAME FOR Y-DIRECTION
RHOUP=0,
RHOVP=0.
DPDX¥P=0.
DPDYP=0.
PFILT=1!.
INDPX=1
INDPY=1
C-----IN- AND OUTFLOWS.
C-----SEE MANUAL FOR INSTRUCTIONS ON USE
DO 71 JK=1,NIM
QZ(IIK)=0.
QINFL{IIK)=$.
QOUTFL{JK)=0.
PO 72 IKJ=1 NIM
PHIIN(IIK,IKI)=0.
72 CONTINUE
71 CONTINUE
C--—--SHORT-WAVE RADIATION
C ASSUMED TO PENETRATE THE WATER BODY.
C  FLXRAD=SHORT-WAVE RADIATION,
C  RADPFRA=FRACTION ASSUMED TO BE A BOUNDARY FLUX
C BETA=EXTINTION COEEFFICIENT
FLXRAD=0.0
RADFRA=04
BETA=(.1
(3K o ook ok O R A A8 3K oo AR A A o o Ao AR OR KR 3 o o AR oo ok o
C*¥*xx*GROUP 8. INITIAL DATA
DO 81 JJK=1 NIM
DPDX(IJK)=0.
DPDY(1IK)=0.
FW({IJK)=0.
DO 82 IKJ=1 NIMP2
F(IIK,IKJ)}=0.
82 CONTINUE
81 CONTINUE
C-----INITIALISE DEPENDENT VARIABLES
ISTPR=INDEX FOR STARTING PROFILES
=} PROFILES ARE SPECIFIED WITH VST1{I-NJM}-ZST2(1-NIM)
SEE MANUAL.
=2 PROFILES ARE SPECIFIED IN CASE WITHOUT THE USE
OF VSTI(I-NIM)-ZST2(1-NIM).
--NOTE:DEFAULT VALUE FOR ALL YARIABLES IS 0.0.

OO0 CcCO000O0O0O0n0n
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ISTPR=1
DO 83 UK=1,NJM
VST1(UK)=0.
VST2(IIK)=0.
ZST1(IJK)=0.
ZST2(1JK)=0.

83 CONTINUE
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C+****GROUP 9. BOUNDARY CONDITIONS

----- ITYPEH=INDEX FOR TYPE OF BOUNDARY AT HIGH Z
=1 GIVES SOLID WALL(STATIONARY OR MOVING)
=2 GIVES SYMMETRY LINE

ITYPEL=SAME FOR LOW Z BOUNDARY

oOonNn0nOnO0n

----- IKBHZ(J)=INDEX FOR KIND OF BOUNDARY CONDITION FOR
VARIABLE J AT HIGH Z BOUNDARY
=1 GIVES PRESCRIBED VALUE
=2 GIVES PRESCRIBED FLUX
IKBLZ(J)=SAME FOR LOW Z BOUNDARY
----- ITRHZ(J)=INDEX FOR TIMEDEPENDENCE OF BOUNDARY FOR
VARIABLEJ
=1 GIVES STATIONARY CONDITIONS
=2 GIVES TRANSIENT CONDITIONS SPECIFIED FROM CASE-
SUBROUTINE.SEE MANUAL FOR INSTRUCTIONS ON USE.
=3 GIVES TRANSIENT CONDITIONS READ FROM FILE
ITRLZ(J)=SAME FOR LOW Z BOUNDARY
----- IKBOT(J)=INDEX FOR KIND OF BEHAVIOR AT BOTTOM FOR VARIABLE J
ONLY RELEVANT FOR CASES WITH VERTICAL AREA-DISTRIB.
=1 GIVES "CONSERVATIVE" CONDITION.SEE MANUAL.
=2 GIVES "NON-CONSERVATIVE" CONDITION.SEE MANUAL.
----- SPECIFICATION FOR STATIONARY BOUNDARY CONDITIONS

----- SPECIFICATION FOR TRANSIENT CONDITIONS(ITRHZ OR ITRLZ=2).SEE MANUAL

----SPECIFICATION OF WALL-FKN PARAMETERS.

o000 nNOn00O00000n0n

ITYPEH=1
ITYPEL=1
DO 91 IJK=1,NJM
IKBHZ(IJK)=2
IKBLZ(IJK)=2
ITRHZ(IJK)=1
ITRLZ(IJK)=1
IKBOT(JK)=1
FLUXHZ(IJK)=0.
FLUXLZ(IJK)=0.
V1HZ(IJK)=0.
V2HZ(IJK)=0.
V3HZ(IJK)=0.
V4HZ(IJK)=0.
VSHZ(IJK)=0.
VILZ(IJK)=0.
V2LZ(IJK)=0.
V3LZ(IJK)=0.
V4LZ(IJK)=0.
V5LZ(IJK)=0.
STANTN(IJK)=I.E-3
91 CONTINUE



IKBOT(1)=2

IKBOT(2)=2

IKBOT(S)=2

IKBOT(6)=2

STANTN(1)=1.

STANTN(2)=1.

STANTN(3)=0.05

STANTN(5)=1.

STANTN(6)=1.

CAPPA=0.4

C3B=9.

ROULHZ=0.

ROULLZ=0.
C********************’F************************************************#
C*****GROUP 10. LIMITS AND NUMBERS

EMTMIN=1.E-6

FKMIN=1 E-15

FDMIN=1 E-15

TAUMIN=1.E-3

KINDAV=1
C***************************’F’F****#********#**#************##**********
C****GROUP 11. PRINT OUT
[oI— PRINT CONTROL
C --SET ITPLOT=2 FOR CROSS-STREAM PLOT, =1 FOR NO PLOT

ITPLOT=2
C --SET NSTAT,NPROF,NPLOT TO NUMBER OF STEPS BETWEEN OUTPUT OF
C STATION VALUES,PROFILES AND CROSS-STREAM PLOTS RESPECTIVELY

NSTAT=10

NPROF=50

NPLOT=100
C --SET INIOUT .FALSE. FOR NO INITIAL OUTPUT

INIOUT=.TRUE.

C

C---- SELECT PROFILES TO BE PRINTED AND PLOTTED.
C----U,V.T,S,1C,2C,3C4C,K,E,EMU,SIGM,DPDX,DPDY,W,PRSCN,RIF,N,UW,VW
C 1234,56,7, 89,1011, 12, 13, 14,15, 16,17,18,19,20

DO 111 IJK=1,20

PRPROF(IJK)=.FALSE.

PLPROF(1JK)=.FALSE.
111 CONTINUE

C-----PARTICLE TRACKING.SEE MANUAL.
C-----INDPT=INDEX FOR PARTICLE TRACKING

C =0 GIVES NO TRACKING

C =1-4 ONE TO FOUR PARTICLES ARE TRACKED
C

INDPT=0
ILEVEL(1)=0
ILEVEL(2)=0
ILEVEL(3)=0
ILEVEL(4)=0
IPSAVE=1000
CF bk K A o R R KKK 3k o o ROK ORI K OKKHOR o o KK
C**¥*+*GROUP [2.LINKED RUNS.
DO 121 IJK=1,NPM
NSTPDT(IJK)=1
121 CONTINUE



NPROBE-=1
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Cr+xxxGROUP 13. MOVING FREE SURFACE.
MOVE=.FALSE.
ZSSTRT=0.
PREEVA=0,
eh i e L T e L L]
RETURN
END
C
C
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SUBROUTINE PHYS
Ci(ﬁ**********8**************************************************
C

INCLUDE ’comp97.inc’
C
C —— -
CHAPTER A A A A EDDY VISCOSITY AND PRANDTL/SCHMIDT NUMBERS A A A
C

IF(J.NE.0) GOTO 14

C
IFITURBM.EQ.1.OR.ITURBM.EQ.4) GOTO 16

C —-EDDY VISCOSITY
DO 101=2,NMI
F(IJEMU)=CD*RHO(I)*F(I,JK)*F(I,JK)/F(,JD)+EMTMIN

10 CONTINUE

C

C---—-PRANDTL/SCHMIDT NUMBER
IF(IPRSC.NE.2) GOTO 16
DO 15 I=2,NM|1
DTDZ=(F(I+1,JTE)-F(I-1,JTE)+TINY)*RECDZ(I)
DSDZ=(F(I+1,JS)-F(I- 1,JS)+TINY)*RECDZ(I)
DC1DZ=(F(I+1,JC1)-F(I-1,JC1)+TINY)*RECDZ(I)
DC2DZ=(F(1+1,JC2)-F(I-1,JC2)+TINY)*RECDZ(I)
DC3DZ=(F(I+1,JC3)-F(I-1,JC3)+TINY)*RECDZ(])
DCA4DZ=(F(I+1,JC4)-F(I- 1,JC4)+ TINY)*RECDZ(I)
BPR=-(F(I,JK)*F(I,JK))AF(I,JD)*F(I,JD))*AGRA V*
1 (-2.*C{RHO*(F(I,JTE)-TREF)*DTDZ
2 +C2RHO*DSDZ+C3RHO*DC1DZ+C4RHO*DC2DZ
3 +C5RHO*DC3DZ+C6RHO*DC4DZ)
IF(BPR.LT.TINY) BPR=TINY
PRSCNU(I)=(C {PR+C2PR*BPR)/(1.+C3PR*BPR)

15 CONTINUE

16 CONTINUE

C —-REFERENCE DIFF-VALUES AT CELL-BOUNDARIES
DO 13 [=2,NM2
IF(KINDAV.EQ.2) THEN

C ---HARMONIC MEAN
EMU®I)=2*(Z(1+1)-Z(1))(DZCELL(I)/F(IJEMU)
1 +DZCELL(L+1)/F(I+1,JEMU))
ELSE

C ---ARITHMETIC MEAN
EMU(I)=0.5*(F(I+1,JEMU)*DZCELL(I)+F(I,JEMU)*DZCELL(I+1))
1AZ(1+1)-Z(1))+EMULAM
ENDIF
DIFREF(I)=EMU(I)/(0.5*(RHO(I)+RHO(I+1)))
1/(Z(1+1)-Z(1))

13 CONTINUE



RETURN
14 CONTINUE
C
(Ery— -
CHAPTERB B B B B B CHOOSEVARIABLEB B BB BB BB B
C

1IF(J.EQ.JRHOU) GOTO 300
IF(J.EQ.JRHOV) GOTO 400
IF(J.EQ.JH.OR.J.EQ.JS) GGTO 500
IF(J.EQ.JK) GOTO %00
IF(J.EQ.JD) GOTO 700
IF(J.GE.IC1) GOTO 500

CHAPTERC C € C C C UMOMENTUMEQUATIONCCCCCCCC
C
300 CONTINUE
C
DO 30 I=2,NM}
DIF(I)=DIFREF(I)
SK(I)=0.
SIP(D)=0.0
30 CONTINUE
C
IF(ABS(CORI).GT.TINY.AND.SOLVAR(JRHOV)) CALL PEA
360 CONTINUE
C-----PRESSURE GRADIENT
IF{ABS(INDPX).NE.1) GOTO 310
DO 311 [=2,NM1
311 DPDX(I)=DPDXP
GOTO 340
310 CONTINUE
C-----CALCULATE MASS FLOW
XMFL=0.0
DO 31 1=2,NM1
XMFL=XMFL+DZCELL()*F(I,JRHOU)
31 CONTINUE
IF(ABS(INDPX).NE.2) GOTO 320
DO 32 1=2,NM1
DPDX(1)=DPDX(1)+PFILT*(XMFL-RHOUP)
32 CONTINUE
GOTO 340
320 IF(ABS(INDPX).NE.3) GOTO 330
FACTPR=PIPI*PFILT*PFILT*DT*XMFL*AGRAV/XDIM/XDIM
DO 33 I=2,NM1
DPDX(I)=DPDX(I)+FACTPR
33 CONTINUE
330 IF(ABS(INDPX).NE.4) GOTO 340
C-----READ DPDX FROM SEPARATE FILE
340 CONTINUE
IFINDPX.GT.0) GOTO 350
C ---EFFECT OF STRATIFICATION
DDIFF=AMAX1(0.05,-(RHO(NM1)-RHO(2)))
D# 34 1=2,NM!
DCORR=(-(RHO(I)-RHO(2))+0.05 VDDIEF
IF(DCORR.GT.1.) DCORR=1.
IF(DCORR.LT.0.01) DCORR=0.0]
34 DPDX(I)=DPDX(I)*DCORR
359 CONTINUE



DO 35 1=2,NM 1
SI(N)=SI(I)-DPDX(I)
35 CONTINUE
CALL CASE(3)
RETURN
C
Cammmme e
CHAPTERD D D D D D V-MOMENTUM EQUATIOND DD D D D D D
C
400 CONTINUE
DO 40 I=2,NM1
DIF(I)=DIFREF(])
SI(I)=-CORI*F(I,JRHOU)
SIP(I)=0.0
40 CONTINUE
C
C---—-PRESSURE GRADIENT
IF(ABS(INDPY).NE.1) GOTO 410
DO 411 I=2,NMI
411 DPDY(I)=DPDYP
GOTO 440
410 CONTINUE
C --CALCULATE MASS FLOW
YMFL=0.0
DO 41 I=2,NM1
YMFL=YMFL+DZCELL(I)*F(,JRHOV)
41 CONTINUE
IF(ABS(INDPY).NE.2) GOTO 420
DO 42 1=2,NM1
DPDY (I)=DPDY (I)+PFILT*(YMFL-RHOVP)
42 CONTINUE
GOTO 440
420 IF(ABS(INDPY).NE.3) GOTO 430
FACTPR=PI*PI*PFILT*PFILT*DT*YMFL*AGRAV/YDIM/YDIM
DO 43 1=2,NM1
DPDY(I)=DPDY (I)+FACTPR
43 CONTINUE
430 IF(ABS(INDPY).NE.4) GOTO 440
C-—-READ DPDY FROM SEPARATE FILE
440 CONTINUE
IF(INDPY.GT.0) GOTO 450
C ---EFFECT OF STRATIFICATION
DDIFF=AMAX1(0.05,-(RHO(NM1)-RHO(2)))
DO 44 I=2,NM1
DCORR=(-(RHO(I)-RHO(2))+0.05)/DDIFF
IF(DCORR.GT. 1.) DCORR=1.
IF(DCORR.LT.0.01) DCORR=0.01
44 DPDY(I)=DPDY(I)*DCORR
450 CONTINUE
DO 45 I=2,NM1
SI()=SI(I)-DPDY (I)
45 CONTINUE
CALL CASE(3)
RETURN

@ ;

CHAPTER E E SOURCES AND DIFFUSION COEFFICIENTS FOR JH,JS,JC1-JC4
C

500 CONTINUE




DO 57 1=2,NM1
SI(1)=0.
SIP(I)=0,
57 CONTINUE
C
C ---EFFECTIVE PRANDTL NUMBER
DO 50 [=2,NM1
PRTJ=PRT{))
IR(IPRSC.EQ.2) PRTI=PRSCNU(I)
PREF(I)=(F(I JEMUXEMULAM)/(F(LJEMUYPRTJ+EMULAM/PRL(J})
50 CONTINUE
PREF(NM1)=PREF(NM?2)
C
C ---DIFFUSION VALUES
DO 51 I=2,NM2
PREFJ=().5*(PREF(I+1)+PREF())
DIF(I)=DIFREF(I)/PREFJ
51 CONTINUE
C
IF(J.NEJH.OR.FLXRAD.GT.TINY) GOTO 56
C ---SHORT-WAVE RADIATION
PO 52 1=2,NMI
SHIG=EXP(-BETA¥ZDIM-ZBOUND(I)))
SLOW=AREA(I-1 YAREA(I*EXP(-BETA%ZDIM-ZBOUND(I-1)))
SI(I)=-(1.-RADFRA)*FL.XRA D*(SHIG-SLOW ' DZCELL(])
52 CONTINUE
SI(NMI)=SI(NM1)-RADFRA*FLXRAD/DZCELL(NM1)
56 CONTINUE
C
CALL CASE(3)
RETURN
C
[ GE— -
CHAPTERFE F F F F F TURBULENT KINETIC ENERGYF F EF F F
C
600 CONTINUE
DO 60 1=3,NM2
BUO()=0.
FIK=F(LJK)
FJD=F(L,ID)
DUDZ=(F(I+1,JRHOU)-F(I-1,JRHOU}+TINY *RECDZ(1)/RHO(I)
IF (ITYPEF.EQ.1) THEN
DVDZ=(F(I+1,JRHOV)-F(I- 1,JRHOV}+TINY y* RECDZ(L/RHO(I)
GRADSQ(1)=DUDZ*DUDZ+DVDZ*DVDZ
ELSE
DWDZ=(FW{I)-FW(I-1)YDZCELL(I)
GRADSQ(I)=DUDZ*DUDZ+2.*DWDZ*DWDZ
ENDIF

C --BUOYANCY PARAMETERS
DTDZ=(F(+1,JTE)-F(-1,JTE)+TINY)*RECDZ(I)
DSDZ=(F(I+1,18)-F(I-1, IS+ TINY)*RECDZ(I)
DC1DZ=(F(I+1,JC1)-F(I-1,JCI)+ TINY*RECDZ(I)
DC2DZ=(F(I+1,JC2)-F(I-1JC2)+ TINY }*RECDZ(I)
DC3DZ=(F(I+1,JC3)-F(I-1,JC3)+ TINY)*RECDZ(I)
DC4DZ=(F(I+1,JC4)-F(I-1,JC4)+ TINY *RECDZ(I)

IE(IPRSC.EQ.2) GOTO 602
BUO(I)=AGRAV*(-2.*CIRHO*(F(I,J TE)-TREF)
1 *DTDZ/PRT(JH)+C2RHO*DSDZ/PRT(IS)+C3RHO*DC I DZ/PRT(IC1)



SI(I)=F(L,JEMU)*(C 1*GRADSQ(I)+C3*BUO(I))*EID/FIK/RHO(I)
SIP(I)=-C2*FID/FIK
DIF(I)=DIFREF(I)/PRT(ID)

70 CONTINUE

C
C-----D IS PRESCRIBED NEAR BOUNDARIES
C -ATLOW Z

DIF(2)=DIFREF(2)/PRT(JD)
SI(2)=FACTLZ**1.5*CD75/(CAPPA*Z(2))*GREAT
IF(F(2,JK).LT.(FKMIN+TINY))SI(2)=FDMIN*GREAT
IFATYPEL.EQ.2) SI(2)=F(3,JD)*GREAT
SIP(2)=-GREAT

C --ATHIGHZ
ZREF=ZDIM-Z(NM1)
SI(NM1)=FACTHZ**1.5*CD75/(CAPPA*ZREF)*GREAT
IF(F(NM1,JK).LT.(FKMIN+TINY))SI(NM1)=FDMIN*GREAT
IF(ITYPEH.EQ.2) SI(NM1)=F(NM2,JD)*GREAT
SIP(NM1)=-GREAT
CALL CASE(3)
RETURN

e N N N e ei———cc—oooi-—oo——omoat oD
END

C

C
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SUBROUTINE COMP
CroRotoRok 6 ok ofoRoKoloR ROk kKRR ok ROk KRR oK 3 3Kk K ok ok ok ool Rolokok
C
INCLUDE ’comp97.inc’
C
C
DIMENSION A(NIM),B(NIM),C(NIM),D(NIM),F1D(NJP2NI)
REAL CUP,CDOWN,TERM,DCDT

EQUIVALENCE(F1D(1),E(1,1))

DOUBLE PRECISION A,B,C,D

CHAPTER A A A A CALCULATE URUP, URUPUP ANDFW A A A AA A
C

J=0

CALL PHYS

IF (ITYPEF.EQ.2) THEN
C STORE X-DIRECTION MOMENTUM ONE AND TWO INTEGRATION STEPS UP
C ONLY RELEVANT FOR 2-D PARABOLIC FLOW

DO I=2,NM!

URUPUP(I)=URUP(I)

URUP(I)=F1D(I)

IF (ISTEP.EQ.0) URUPUP(I)=URUP(I)

ENDDO

ENDIF

DO 480 J=1,NF

IF (ITYPEF.EQ.2.AND.J.EQ.2) THEN
C CALCULATE VERTICAL VELOCITY FROM CONTINUITY EQUATION



2 +C4RHO*DC2DZ/PRT(JC2)+CSRHO*DC3DZ/PRTIC3)
3 +C6RHO*DCADZ/PRT(IC4))
GOTO 01
602 BUO()=AGRAV/PRSCNU(I¥*(-2.*CIRHO*(F(I,J)TE)-TREF)
1 *DTDZ+C2RHO*DSDZ+C3RHO*DCIDZ
2 +C4RHO*DC2DZ+C5SRHO*DC3DZ+C6RHO*DCADZ)
601 CONTINUE
C
C ---SOURCE TERMS AND DIFFUSION
SK{D)=F(LJEMU*(GRADSQ()+BUO()YRHO(I)
SIP(I)=-FID/FJK
DIF(I)=DIFREF(I)/PRT(K)
60 CONTINUE

C-----K IS PRESCRIBED NEAR BOUNDARIES

C —-ATLOWZ
ZREF=Z(2)
FACTST=(ABS(FLUXLZ(RHOU)+TINY}**1.5
1 +ABS{FLUXLZ(JRHOV)+TINY)**1 5)/RHOREF**1.5/CD75
FACTBU=CAPPA*ZREF*AGRAV/CD75%(
1 FLUXLZ(JHY*2.¥CIRHO*(F(2,ITE)-TREFYRHOREF/CPHEAT
2 -FLUXLZ(J$)*C2RHO-FLUXLZ(JC1}*C3RHO
3 -FLUXLZ(JC2)* CARHO-FLUXLZ(JC3)*CSRHO-FLUXLZ(JC4)*C6RHO)
IF(FACTBU.LT.TINY**2) FACTB U=TINY**2
FACTLZ=(FACTST+FACTBU)**.67
IE(FACTLZ.LT. FKMIN)FACTLZ=FKMIN
SIP(2)=-GREAT
SK2)=FACTLZ*GREAT
IF(ITYPEL.EQ.2) SI(2)=F(3,JK)*GREAT
DIF(2)=DIFREF(2)/PRT(JK)

C --ATHIGHZ
ZREP=ZDIM-Z(NM1}
COEFKS=CD75
FACTST={ABS(FLUXHZ(JRHOU)+TINY)**1.5
1 +ABS(FLUXHZ(JRHOV)+TINY}**1.5/RHOREF**1.5/COEFKS
FACTBU=CAPPA*ZREF*AGRAV/CD75%(
{ FLUXHZ(JH)*2.*CIRHO*(F(NM,JTE)- TREFYRHOREF/CPHEAT
2 -FLUXHZ(JS)*C2RHO-FLUXHZ(JCI)*C3RHO
3 -FLUXHZ(JC2)*C4RHO-FLUXHZ(JC3)* CSRHO-FLUXHZ(JC4)*C6RHO)
IF(FACTBU.LT.TINY #¥2) FACTBU=TINY #+2
FACTI 1Z=(FACTSR-EACTBU)**.67
IF(FACTHZ. LT .FKMIN)FACTHZ=FKMIN
SI(NM1)=FACTHZ*GREAT
IFITYPEH.EQ.2) SIINMI)=F(NM2,JK)*GREAT
SIP(NM1)=~GREAT
CALL CASE(3)
RETURN

CHAPTERG G G G G G DISSIPATION OF TURBULENCEG G G G G G
C
700 CONTINUE
DO 70 1=3,NM2
FIK=F(1,JK)
IF(FJK.LT.FKMIN) EJK=FKMIN
FID=F(1,JD)
C
C ---SOURCE TERMS AND DIFFUSION



ONLY RELEVANT FOR 2-D PARABOLIC FLOW
PRESCRIBED ZERO VERTICAL VELOCITY AT THE LOWER BOUNDARY
FW(1) IS THE VERTICAL VELOCITY AT THE LOWER BOUNDARY
FW(I) IS THE VERTICAL VELOCITY AT THE UPPER WALL OF CELL I
FW(1)=0.
DO I=2,NM1
FW()=FW(I-1)+(URUP(I)-F1D(I))*DZCELL(I)/(DT*RHO(I))
ENDDO
ENDIF

oNoNoNQ!

C

C -
CHAPTERB BB BB I.DARRAYBBBBBBBBBBBB
C

IF(NOT.SOLVAR(J)) GOTO 480
IDJ=IDIMF*(J-1)

[1J=1+IDJ

12]=2+IDJ

INM1J=NM1+IDJ

INJ=N+IDJ

(I —
CHAPTERC C C C C PHYSICSCCCCcCccCcccccccecc
C

CALL PHYS
THZ=0.0
TLZ=0.0
IFITYPEH.NE.2) CALL BOUND(N,THZ)
IF(ITYPEL.NE.2) CALL BOUND(1,TLZ)
IF(ITEST.EQ.1) GOTO 450
WRITE(6,451) J,(DIF(1),1=2,NM 1)
WRITE(6,452) (SI(1),I=2,NM1)
WRITE(6,453) (SIP(]),]=2,NM1)
451 FORMAT(24H COMP SOLVE TESTS FOR J=,13/8H DIF(I)=/(3X, IP6E11.3))
452 FORMAT(7H SI(I)=/(3X,1PGEI 1.3))
453 FORMAT(8H SIP(I)=/(3X,1P6EI1.3))
450 CONTINUE
C
(@ — -
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C

IF ITYPEF.EQ.1) THEN
C 1-D TRANSIENT FLOW
C—--A’S AND B’S
DO 1=2,NM2
A(D)=DIF(])
B(I+1)=A(l)
IFIKBOT(J).EQ.1) B(l+1)=A(I)*AREA(IYAREA(I+1)
ENDDO
NLIMIT=NM1
IF(MOVE) NLIMIT=NM?2
DO 339 [=2,NLIMIT
A(D=AI)+AMAX1(0.,-QZ(I))/ AREA(])
B(I+1)=B(I+1)+AMAX1(0.,QZ(I))/ AREA(I+1)
339 CONTINUE
BQ)=TLZ
A(NM1)=THZ
C-----C’'SAND D’S
DO 485 1=2,NM1
IJ=I+IDJ



DCDT=DZCELIL{I}/DT
D(D)=A{I)+B()+DCDT-DZCELL(I)*SIP{I)
485 C()=F1D{Iy*DCDT+DZCELL(IP*SI{])
DO 487 =2 NLIMIT
D([}=DM+(QZ)-QZ(I- 1)) AREA(+QOUTFLIAREA(I}
C(D=CI+PHIIN(LN*QINFL{IYAREA(])
487 CONTINUE
IF(IKBLZ(1).EQ.1) GOTO 486
B(2)=0.0
C(R)=C2»FLUXLZ(])
D(2)=D(2)-TLZ
486 IF(IKBHZ(1).EQ.1) GOTO 491
ANMD=0.0
CONMD=C(NM1)-FLUXHZ({])
D(NM1)=D{NM 1)-THZ
48] CONTINUE
C
ELSEIF (ITYPEF.EQ.2) THEN
C 2-D PARABOLIC FLOW
C-----A’S ANDB’S
DO I=2,NM2
C POWER-LAW SCHEME
A(D=MAX(.,DIF(D)*(1.-0. ’*ABS{FW (1)/DIF(I)))**5.)
1+MAX(0.,-FW(I))
B+ D=A@+FW ()
ENDDO
C-----B{2} AND A(NMI}
B()=TLZ
A(NM1)=THZ
IF JKBLZ(J).EQ.2) B(2)=0.
IF (IKBHZ{J).EQ.2) A(NM 1)=&
C--—--C’SANDD'S
DO I=2,NM1
1J=1+IDJ
CDOWN=F1D{I))RHO(I)
CUP=URUP(I)/RHO(I}
IF (J.EQ.JRHQU) CUP==URUPUP(I)YRHO(I}
DCDT=DZCELL()/DT
TERM=FW()-FW(I- )+A{ID+B(D)
D(D)=DCDT*CDOWN+TERM-DZCELL(I)*SIP(I)
C(I=DCDT*CUP*F1D(IN+DZCELL{I)*SKI)
ENDDO
IF(IKBI.Z{I).EQ.2) C(2)=C(2)+FLUXLZ(])
IF(IKBHZ(I).EQ.2) C(2)=C(2)-FLUXHZ{I)
ENDIF

IF(ITEST.EQ.1) GOTO 464
WRITE(6,405) (A(I).I=2,NM1)
WRITE(6,406) (B(I),1=2,NM1)
WRITE(6,407) (C(I).]=2,NM1)
WRITE(6,408) (D(1).I=2,NM1)

405 FORMAT(6H A(I}=A3X,1P6EL 1.3))

406 FORMAT(6H B(1)=/(3X,1PSE]1.3))

407 FORMAT(6H C(I}=A(3X,1P6EL1.3))

408 FORMAT(6H D(1)=/(3X, 1 P6EL1.3))

CHAPTERE E EE E S@LVEFORNEWRSEEEEEEEEE
C



464 C(2)=(B(2)*F1D(11J)+C(2))/D(2)
D(2)=A(2)/D(2)

DO 465 I=3,NM1
T=1./(D(1)-B()*D(-1))
DI)=A(1)*T

465 C()=(B(I)*C(I-1)+C(I))*T
DO 466 IDASH=1,NM2
I=N-IDASH
U=I+IDJ

466 FID(I))=D)*FID(J+1)+C(I)

C
@,
CHAPTERF F F F F ADJUSTF(IL),FIN)FFFFFFFF
C
IF(IKBLZ(J).EQ.I) GOTO 468
F1D(I1J)=F1D(12J)+FLUXLZ{J)/(TLZ+TINY)
GOTO 460

468 FLUXLZ(J)=TLZ*(F1D(I11])-F1D(12J))

460 IF(IKBHZ(J).EQ.1) GOTO 472
F1D(INJ)=F1D(INM 1J)-FLUXHZ(J)/(THZ+TINY)
GOTO 470

472 FLUXHZ(J)=THZ*(FID(INM 1])-FID(INJ))

C

470 IF(ITEST.EQ.1) GOTO 480
WRITE(6,476) J,(F1D(I+1DJ),I=1,N)

476 FORMAT(6H F(1,,12,1H)/(3X,1P6EI11.3))

480 CONTINUE

C--- - -
RETURN
END

C
C

C***’k***********’k************’k***************************************

SUBROUTINE BOUND(11,0UT)
(AR KKK A o oo KKK HOKKK A R oo A K AA OK RS HOR oo o
C
INCLUDE ’comp97.inc’
C
DIMENSION S1(2),52(2),53(2),54(2),S5(2)
C
e -
CHAPTER A A A A A A PRELIMINARIESA A AAAAAAAA
C

KWALL=2-1/I1
12=11+3-2*KWALL

FACTOR=FLOAT(II/N)
ZREF=Z(2)+(Z(N)-Z(NM1)-Z(2))*FACTOR
SQRTK=SQRT(ABS(F(2,JK)+TINY))

IF(KWALL.EQ.2) SQRTK=SQRT(ABS(F(NM1,JK)+TINY))
ZPLUS=ZREF*SQRTK/(EMULAM/RHOREF)
S$3(1)=ROULLZ

S$3(2)=ROULHZ

S4(1)=ABS(FLUXLZ(JRHOU))
S4(2)=ABS(FLUXHZ(JRHOU))
S5(1)=ABS(FLUXLZ(JRHOV))
S5(2)=ABS(FLUXHZ(JRHOV))
IF(ABS(FLUXLZ(JRHOU)).LE.TAUMIN)S4(1)=TAUMIN
IF(ABS(FLUXHZ(JRHOU)) LE.TAUMIN)S4(2)=TAUMIN



IF(ABS(FLUXLZ(JRHOV)).LE.TAUMIN)S5(1)=TAUMIN
IF(ABS(FLUXHZ(JRHOV)).LE.TAUMIN)S5(2)=TAUMIN

C

C ---CALCULATE SURFACE ROUGHNESS
TAUB=SQRT(S4(KWALL)**2+S5(KWALL)**2+TINY)
FRIVEL=SQRT(TA UB/RHOREF+TINY)
S1(KWALL)=FRIVEL
IF(S3(KWALL).GT.TINY) GOTO 20
ZROUGH=EMULAM/RHOREF/C3B/S |(KWALL)
CCLOG=ALOG(ZREF/ZROUGH)
S2(KWALL)=CCLOG
GOTO 21

20 CONTINUE
S2(KWALL)=ALOG(ZREF/S3(KWALL))

21 CONTINUE
IF(J.NE.JRHOU) GOTO 200

C

C — - —-

CHAPTERB B B BB B VELOCITIES BBB BB BBBBB

C ---TLZ AND THZ FOR X-MOMENTUM
FRIX=SQRT(ABS(S4(KWALL)/RHOREF+TINY)
OUT=CAPPA*FRIX/S2(KWALL)
GOTO 400

200 IF(J.NE.JRHOV) GOTO 300

C ---TLZ AND THZ FOR Y-MOMENTUM
FRIY=SQRT(ABS(SS(KWALL))/RHOREF+TINY)
OUT=CAPPA*FRIY/S2(KWALL)
GOTO 400

CHAPTER C C C C C C OTHER DEPENDENT VARIABLESC C C C C C
C

300 OUT=SI(KWALL)/(1/STANTN(J)+S2(KWALL)/CAPPA)

C

C — -

400 IF(ZPLUS.LT.11.5) OUT=EMULAM/RHOREF/ZREF/PRL(J)
IF(ITURBM.EQ. 1) OUT=(EM UCON+EMULAM)/RHOREF/ZREF/PRT(J)
IFITEST.EQ.I) GOTO 401
WRITE(6,4000) J,11,0UT

4000 FORMAT(11H WALL TESTS,3H J=,13,4H 11=,13,6H OUT=,E10.3)

401 CONTINUE
RETURN
END

C
C
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SUBROUTINE OUTPUT
C******************’k*************************************************
C

INCLUDE ’comp97.inc’

C

DIMENSION LAB1(10,NPM),0UT(13),LAB2(10,NPM),LABI(13),

1 XLPLOT(500),YLPLOT(500,10),I0UT(11),LABEL(20),

2 XTPLOT(NIM),YTAXIS(6),Y TPLOT(NIM,6),OUTALL(NIM,20)

DIMENSION XP(5),YP(5),LABP(10),TIMEP(500),XPART(500,4),

F YPART(500,4), YPAXIS(4),OUTI(NIM,10),0UT2(NIM,10)

F,PLABEL(20),KOUT1(NPM),KOUT2(NPM),HCONTI(NPM),SCONTI(NPM)

F,BFLUXH(NPM),BFLUXS(NPM)




CHAPTER 1 1 1 1 1 1 INITIAL DATA FORPRINTOUT1 111 11
C
C ----CROSS-STREAM OUTPUT(PROFILE) DATA
C --ASSIGN KOUT1/2=NO. OF VARIABLES AND OUTPUT LABELS LAB(K)
DATA (LABEL(K),K=1,20)/4HUVEL,4HVVEL 4HTEMP,3HSAL,2H1C,
1 2H2C,2H3C,2H4C,
2 2HKE,3HDKE,3HEMU,4HSIGM,4HDPDX,4HDPDY,1HW,
3 4HPRSC,3HRIF,1HN,2HUW 2HVW/
DATA (PLABEL(K),K=1,20)/4HUVEL,4HVVEL,4HHTEMP,3HSAL,2HIC,
1 2H2C,2H3C,2HA4C,
2 2HKE,3HDKE,3HEMU ,4HSIGM,4HDPDX,4HDPDY,1HW,
3 4HPRSC,3HRIF,1HN,2HUW 2HVW/
DATA (LABI(K),K=1,13)/1HZ 4HAREA,4HDZCL ,4HUVEL,4HVVEL ,4HTEMP,
1 3HSAL,3HTKE,3HDKE,2HC1,2HC2,2HC3,2HC4/

C-----TRAVERSE(CROSS-STREAM) PLOT DATA

C --ASSIGN NYT=NO. OF VARIABLES TO BE PLOTTED

C --INSERT DIMENSIONS,ENSURE THAT ITDIM.GE.N AND JTDIM.GE.NYT
DATA NYT/5/1TDIM,JTDIM/40,6/

C --ASSIGN LABELS FOR PLOT AXIS
DATA XTAXIS/4HZ(1)/

DATA (LABP(K),K=1,9)/4HTIME,2HX1,2HY1,2HX2,2HY?,
F 2HX3,2HY3,2HX4,2HY4/
DATA XPAXIS/2H X/
DATA (YPAXIS(K),K=1,4)/4*1HX/
DATA ILDIM,JLDIM/500,10/
C--- —r

C--eeeee- NOTE,IN THIS SUBROUTINE X AND Y ARE USED AS COORDINATES
Cc FOR THE PLOT-ROUTINES.

Commme e
CHAPTER 2 2 2 INITIAL OUTPUT AND CALCULATIONS 2 22222
C

IF(ISTEP.NE.0) GOTO 100
IF(INIOUT)THEN
WRITE(6,1000)
WRITE(6,1008)("** K=1,19)
IF(NPROBE.GT.1) WRITE(6,101 1)IPROBE
WRITE(6,1001)
VOLUME-=0.
DO 15 I=2,NM1
VOLUME=VOLUME+AREA(I)*DZCELL(I)
15 CONTINUE
DO 10 J=1,NF
IOUT(1)=]
IOUT(2)=0
IF(SOLVAR(J)) IOUT(2)=1
IOUT(3)=IKBLZ(J)
IOUT(4)=IKBHZ(J)
IOUT(5)=ITRLZ(J)
IOUT(6)=ITRHZ(J)
IOUT(7)=IKBOT())
OUT(1)=PRL(J)
OUT(2)=PRT(J)
OUT(3)=STANTN(J)
10 WRITE(6,1003)(IOUT(K),K=1,7),(OUT(K),K=1,3)
WRITE(6,1005)N,ZDIM,IGRID,ITURBM,INDPX,ITY PEH,LSTEP,



1 XIDIM,INDARE,[PRSC,INDPY ,ITYPEL,T.AST,Y DIM,YOLUME
WRITE(6,1010) CPHEAT,BETA,PFILT,RHOREF,RADFRA,
1 ROULHZ,EMULAM,CORI.ROULLZ

C-----INITTIAL PROFILES

1

16

WRITE(6, 1002)
WRITE(6,1009)( *' K=1,16)
WRITE(6,1006)(LABI(K),K=1,9)
DO 11 I=N,1,-1
OUT(1)=Z(I)

OUT(2)=AREA(])
OUT(3)=DZCELL(])
OUT(4)=F(I,IRHOU)YRHOREF
OUT(5)=F(IJRHOV)/RHOREF
OUT(6)=F(I,JH/RHOREF/CPHEAT
OUT(7)=F({L,JS)

OUT(8)=F(LJK)

OUT(W)=F(,ID)

! WRITE(6,1007)L,(OUT(K),K=1.9)
WRITE(6,1012)L ABI(K),K=10,13)
DO 16 I=N,1,-1
OUT(10)=F(1,JC1}
OUT(!1)=F(1LJC2)
OUT(12)=F(1,IC3)
OUT(13)=F{1,]C4)

WRITE(6,1013){OUT(K),K=10,13)
ENDIF

C-----CALCULATE INITIAL HEAT AND SALINITY CONTENTS

HCONTI(IPROBE)=0.

SCONTKIPROBE)=0.

BFLUXH(IPROBE)=0.

BFLUXS(IPROBE)=0.

DO 12 I=2,NM1

HCONTI(IPROBE)=HCONTI(IPROBE)+F(I,JH)*DZCELL(I)*AREA(I)

SCONTI(IPROBE)=SCONTI(IPROBE)+F(,JS)*DZCELL{I)*AREA(I)
CONTINUE

C-----PRELIMINARY CALCULATIONS FOR OUTPUT

NUMBPR=0

DO 1371=1,20

IF(.NOT.PRPROF(I}) G®TO 14

NUMBPR=NUMEPR+1

IF(INUMBPR.LE.10) LAB1{NUMBPR,IPRORE)}=LABEL{J}
[F(NUMBPR.GT.10) LAB2(NUMBPR-10,IPXOBE)=LABEL(J)

14 CONTINUE
13 CONTINUE

KOUT{{IPROBE)=MIN(10,NUMBPR)
KOUT2(JPROBE)=MIN(10,NUMBPR-1#)

1000 FORMAT(1H1,1$HPRINCIPAL DATA USED)
101t FORMAT(1X,’IPROBE=",13}
1001 FORMAT{IHO0.5X,’PHI",2X,’SOLVAR’,3X"IKBLZ'3X, IKBHZ’,

I 3XITRLZ,3X,'TTRHZ’ 3X,’ IKBOT”,
2 4X,’PRL’,8X,’PRT",5X,’STANTN’)

i002 FORMAT(1H1.18H INITIAL PROFILES)
1003 FORMAT(1X,17,618,1PSE11.3)
1085 FORMAT(/1X 4H** 2HN=159X,5HZDIM=,1PE10.3,5X.6HIGRID=,12,3X,

1 THITURBM=,12,3X,6HINDPX =12, 3X,7HITYPEH=,12/5X 6 HLSTEP=,15,
2 5X,5HXDIM=,1PE10.3,5X,7THINDARE=,12,2X,6HIPRSC=,12,4X.

3 6HINDPY=,12,3X,7HITYPEL=,12/5X 6HTL.AST=, 1 PE8.1,2X,

4 SHYDIM=,1PE10.3,5X,7HVOLUME=,IPE10.3)



1006 FORMAT(1H0,2X,2HI ,A8,8A10)

1012 FORMAT(1X/3X,2HI ,4A9)

1007 FORMAT(1X,13,1P9E10.2)

1013 FORMAT(1X,13,1P4E10.2)

1009 FORMAT(1X,2X,16A1)

1008 FORMAT(1X,19A1)

1010 FORMAT(/5X,7HCPHEAT=,1PE10.3,5X,SHBETA=,1PE10.3,
1 4X,6HPFILT=,1PE10.3/5X,7HRHOREF=,1PE10.3,5X,7HRADFRA=,
2 1PE10.3,2X,7HROULHZ=,1PE10.3/
3 5X,7HEMULAM=,1PE10.3,5X,SHCORI=,
4 1PE10.3,4X,7HROULLZ=,1PE10.3)

RETURN
100 CONTINUE
C
(O
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C-----INTEGRATE BOUNDARY FLUXES FOR HEAT AND SALINITY
C ---INJOUT-FLOWS
DELH=0.
DELS=0.
DO 23 [=2,NM2
DELH=DELH+QINFL(I)*PHIIN(I,JH)-QOUTEL(I)*F(I,JH)
DELS=DELS+QINFL (I)*PHIIN(LJS)-QOUTFL(I)*F(I,JS)
23 CONTINUE
BFLUXH(IPROBE)=BFLUXH(IPROBE)+NSTPDT(IPROBE)*DT*(FLUXLZ(JH)
1 *AREA(2)-AREA(NMI)*FLXRAD-FLUXHZ(JH)* AREA(NM1)+DELH)
BFLUXS(IPROBE)=BFLUXS(IPROBE)+NSTPDT(IPROBE)*DT*(FLUXLZ(JS)
1 *AREA(2)-FLUXHZ(JS)*AREA(NM1)+DELS)
IF(INDPT.EQ.0) GOTO 202
C--—--PARTICLE TRACKING
C -- PRELIMINARIES
C
IF(ISTEP.NE.1) GOTO 200
DO 20 J=1,INDPT
XP(1)=0.
YP(J)=0.
XPART(1,J)=0.
YPART(1,])=0.
20 CONTINUE
200 CONTINUE
C
C -- NEW COORDINATES
C
DO 21 J=1,INDPT
IP=ILEVEL(J)
XP(J)=XP(J)+NSTPDT(IPROBE)*DT*F(IP,JRHOU)/RHOREF
YP()=YP(J)+NSTPDT(IPROBE)*DT*F(IP,JRHOV)/RHOREF
21 CONTINUE
C
C --- SAVE COORDINATES
C
IF(MOD(ISTEP,IPSAVE).NE.0) GOTO 201
ILP=ISTEP/IPSAVE
TIMEP(ILP)=TIME
DO 22 J=1,INDPT
XPART(ILP,)=XP(J)
YPART(ILP,))=YP(J)
22 CONTINUE



201 C@NTINUE

C

202 CONTINUE

C

C-----TESTS FOR PRINTOUT

C  ---IPRINT=1i GIVES SINGLE(STATION) VARIABLES

C ---IPRINT=2 ADDS THE ARRAY{PROFILE) VARIABLES

C ---IPRINT=3 ADDS CROSS-STREAM PLOTS
[PRINT=0
IF(MOD(ISTEP,NSTAT).EQ.0) IPRINT=1
IF(MOD(ISTEP,NPROF}.E(3.0} IPRINT=2
IF(ISTEP.EQ.0.0R.ITPLOT.E®.1) GOTO 1020
IF(MOD(ISTEP,NPLOT).EQ.0.AND.ISTEP.NE.0.OR.ITEST.NE.1
1 .OR.IFIN.NE.1) IPRINT=3

C

1020 IF(IPRINT.EQ.0) RETURN

C
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C-----CALCULATE HEAT AND SALINITY CONTENTS
HCONT=0.0
SCONT=0.0
VOLUME=0.0

DO 301=2,NM1
VOLUME=VOLUME+AREA(I)*DZCELL({l)
HCONT=HCONT+F(I JHy*DZCELL(I)* AREA(I)
SCONT=SCONT+F(IJSY*DZCELL{I}* AREA(])

30 CONTINUE

WRITE(6,3000) ISTEP,DPDX(NM 1) FLXRAD,DT,TIME, DPDY(NMI)
IF(MOVE} WRITE(6,3008) ZDIM, VOLUME
IF(NPROBE.GT.1) WRITE(6,3007)IPROBE
WRITE(6,3084) HCONTI{IPROBE),BFLUXH(IPROBE),HCONT,
1SCONTI(JPROBE),BFLUXS(IPROBE),SCONT
WRITE(6,3001)
WRITE(6,3002)XFLUXHZ(K),K=1,6)
WRITE(6,3003)}(FLUXLZ(K),K=1,6)
WRITE(6,3009)
WRITE(6,3010)FLUXHZ(K),K=7,NIM)
WRITE(6,301 1 FLUXLZ(K),K=7,NIM)

3000 FORMAT(/1HX,4H** ,7H ISTEP=,15.9X,10HDPDX(NM1)=,1PE10.3,5X,
| 7HFLXRAD=,1PE10.3,5X,3HDT=, | PE10.3/6X,5HTIME=, IPE10.3,
2 5X,10HDPDY{NM)=,1PE10.3)

3001 FORMAT(14X,"XMOM’,7X,’ YMOM' 7X,’ HEAT",7X, SALT",
1 8X,"TKE’,8X,'DKE")

3002 FORMAT(}X,5X,’FLUXHZ',1P6E11.3)

3083 FORMAT(1X,5X,'FLUXLZ’,1P6E11.3)

3009 FORMAT(1X/14X,’CONC.1’,5X,"CONC.2",5X,’CONC.3*,5X,"CONC.4")

3010 FORMAT(1X,5X,"FLUXHZ’,1P4E11.3)

3011 FORMAT(1X,5X,"FLUXLZ’,1P4E11.3)

3004 FORMAT(1H0,5X,20HINTEGRAL CHECKS
1 17HINIT. HEAT-CONT.=,1PE1 1.3,20HINTEGR. BOUND. FLUX=,1PE113,
2 16HPRESENT H-CONT =, 1PE11.3,/
31X, 5X 2OHM*EERRREIERRRAR
4 I7HINIT. SALT-CONT.=,1PE11.3,20HINTEGR. BOUND. FLUX=,1PE11.3,
5 16HPRESENT $-CONT.=,1PE11.3/1X)

3005 FORMAT(1H0,5X," BOUNDARY FLUXES")

3007 FORMAT(1X,5X,'IPROBE="13)



3008 FORMAT(1X,5X,’2DIM=",1PE10.3,5X,”VOLUME=",1PE10.3)

C

C - . -
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C

IF(IPRINT.EQ.1) GOTO 1050

C-----CALCULATE ALL OUTPUT
DO 40 I=1,N

C ---VERTICAL VELOCITIES
WQ=0.
IF(ABS(QZ(I)).LT.TINY) GOTO 45
WQ=QZ(I)/(AREA(])+TINY)

45 CONTINUE
OUTALL(L )=F(IJRHOUYRHOREF
OUTALL(L,2)=F(IJRHOVYRHOREF
OUTALL(L,3)=F(I,JTE)
OUTALL(L4)=F(1,JS)
OUTALL(L,5)=F(I,JCI)
OUTALL(L6)=F(I,JC2)
OUTALL(I,7)=F(I,JC3)
OUTALL(I,8)=F(1,JC4)
OUTALL(I,9)=F(LJK)
OUTALL(], 10)=F(I,JD)
IF(L.EQ.1.OR.LEQ.N) GOTO 401
OUTALL(I,11)=F(I,JEMU)+EMULAM
OUTALL(I,12)=RHO(I)-1000.
OUTALL(L,13)=DPDX(I)
OUTALLC(I, 14)=DPDY(I)
OUTALL(I,15)=WQ
OUTALL(I, 16)=PRSCNU(I)
IF(I.LE.2.OR..GE.NMI) GOTO 401
DRHODZ=(RHO(I+1)-RHO(I-1))*RECDZ(I)
DUDZ=(F(I+1,JRHOU)-F(I- 1, JRHOU))*RECDZ(I)/RHO(I)
DVDZ=(F(I+1 ,JRHOV)-F(I-1,JRHOV))*RECDZ(I)/RHO(I)
OUTALL(],17)=-BUO(I¥(GRADSQ()+TINY)
OUTALL(,18)=SQRT(AMAX I(TINY,-AGRA V/RHOREF*DRHODZ))
OUTALL(I, 19)=-F(,JEMU)*DUDZ/RHO(I)
OUTALL(I,20)=-F(IJEMU)*DVDZ/RHO(])

401 CONTINUE

40 CONTINUE

C

C ---MODIFY OUTPUT ACCORDING TO BOUNDARY CONDITIONS.
OUTALL(N, 15)=0.
IF(ITYPEH.NE.2) OUTALL(N,9)=0.
IF(ITYPEH.NE.2) OUTALL(N, 10)=0.
IF(ITYPEL.NE.2) OUTALL(1,9)=0.
IF(ITYPEL.NE.2) OUTALL(I,10)=0.
IF(ITYPEH.EQ.2) OUTALL(N,11)=OUTALL(N-1,11)
IF(ITYPEL.EQ.2) OUTALL(],11)=OUTALL(2,11)
IFITYPEH.NE.2) OUTALL(N, 11)=0.
IF(ITYPEL.NE.2) OUTALL(1,11)=0.

DO 41 I=1,N

NUMBPR=0

DO 42 J=1,20

IF(.NOT.PRPROF(J)) GOTO 49
NUMBPR=NUMBPR+1

IF(NUMBPR .LE. 10) OUT1(INUMBPR)=OUTALL(LJ)



IF(NUMBPR .GT.10) OUT2(I, NUMBPR-10)=OUTALL(LJ)
49 CONTINUE
42 CONTINUE
41 CONTINUE
C
WRITE(6,1099) (LAB1(K,IPROBE),K=1,KOUT |(IPROBE))
DO 46 I=N,1,-1
46 WRITE(6,1098) 1,Z(1),(OUT1(I,K),K=1,KOUTI(IPROBE))
IF(NUMBPR.LE. 10) GOTO 47
WRITE(6,1099) (LAB2(K,IPROBE),K=1,KOUT2(IPROBE))
DO 48 I=N,1,-1
48 WRITE(6,1098) ,Z(I),(OUT2(I,K),K=1,KOUT2(IPROBE))
47 CONTINUE
C
IF(IPRINT.LT.3.OR.ITPLOT.EQ.1) GOTO 1050
C-----ASSIGN CROSS-STREAM PLOTS
DO 402 I=1,N
402 XTPLOT()=Z(l)
NUMBPR=0
DO 44 J=1,20
IF(NOT.PLPROF(J)) GOTO 400
NUMBPR=NUMBPR+]
DO 43 I=1,N
43 YTPLOT(I,NUMBPR)=OUTALL(LJ)
YTAXIS(NUMBPR)=PLABEL(J)
400 CONTINUE
44 CONTINUE
NYT=NUMBPR
C --CROSS-STREAM PLOT OUTPUT
WRITE(6,1096) TIME,ISTEP
1096 FORMAT(18HICROSS-STREAM PLOT,
1 6H TIME=,1PE10.3,7H ISTEP=,14)
CALL PLOTLP(XTPLOT,ITDIM,N,XTAXIS,YTPLOT,JTDIM,NYT,YTAXIS)
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C

1050 IF(IFIN.EQ.1) RETURN

C-—---PARTICLE TRACKING OUTPUT
IF(INDPT.EQ.0) RETURN
WRITE(6,500)(LABP(K),K=1,9)
DO 50 I=1,ILP
OUT(1)=TIMEP(I)
OUT(2)=XPART(,1)
OUT(3)=YPART(, 1)
OUT(4)=XPART(I,2)
OUT(5)=YPART(L,2)
OUT(6)=XPART(,3)
OUT(7)=YPART(,3)
OUT(8)=XPART(14)
OUT(9)=YPART(I,4)

50 WRITE(6,501)L,(OUT(K),K=1,9)

500 FORMAT(1H0,2X,2HI 9A11)

501 FORMAT(1X,I3,1P9E11.3)
DO 51 J=1,INDPT
DO 52 I=1,ILP
XLPLOT(I)=XPART(,J)
YLPLOT(I,1)=<YPART(LJ)

52 CONTINUE



WRITE(6,502) J
502 FORMAT(12HPARTICLE NR.,I3)
CALL PLOTLP(XLPLOT,ILDIM,ILP,XPAXIS,YLPLOT,JLDIM, 1,YPAXIS)
51 CONTINUE
RETURN
1098 FORMAT(1X,13,1P11E11.3)
1099 FORMAT(1H0,2X,2HI ,6X,1HZ,10A 11)
C
END
C
C
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SUBROUTINE PLOTLP(X,IDIME,IMAX,XAXIS,Y,JDIME,IMAX,YAXIS)

C*****************************************#************#********************

SUBROUTINE FOR PLOTTING J CURVES OF Y(I,J) AGAINST X().

X AND Y ARE SCALED TO THE RANGE 0. TO 1., FOR PLOTTING AS
(Y-YMIN)/(YMAX-YMIN), THE MAXIMUM AND MINIMUM VALUES ARE PRINTED
N.B. THE X AND Y ARRAYS MUST BE REDEFINED BEFORE EACH CALL PLOTS.

IDIME IS THE VARIABLE DIMENSION FOR X.

IMAX IS THE NUMBER OF X VALUES.

XAXIS STORES THE NAME OF THE X-AXIS.

JDIME IS THE VARIABLE DIMENSION FOR Y.

JMAX IS THE NUMBER OF CURVES TO BE PLOTTED, (UP TO 30).

THE ARRAY YAXIS(J) STORES THE NAMES OF THE CURVES,

THE FIRST CHARACTER OF EACH CURVE-NAME IS USED FOR PLOTTING.

XSIZE ALTERS THE X-PLOT SIZE BY AFACTOR OF .2 TO 1., IN STEPS OF

C YSIZE IS THE Y-PLOT SIZE FACTOR OF .2 UPWARDS IN STEPS OF 2

C XSIZE=1., YSIZE=1. GIVES NORMAL SIZE PLOT.

C

OO0O00O0O000O00000O0n

DIMENSION X(IDIME),Y(IDIME,JDIME),Y AXIS(JDIME),
1 A(101),YMAX(30), YMIN(30),DIGIT(1 1)
EQUIVALENCE (YMAX(1),A(1)),(YMIN(1),A(31))
DATA DOT,CROSS,BLANK/1H.,1H+,1H/
1,DIGIT/IHO,1H1,1H2,1H3,1H4,1HS, IH6,1H7, IH8, 1H9, 1H1/
C**x*x SET PLOT SIZE FACTORS
XSIZE=0.6
YSIZE=0.6
C*+***x SCALING X-ARRAY TO RANGE 0 TO 100*XSIZE
XR=100.*XSIZE
XMAX=-1E30
XMIN=+1.E30
IM=IMAX
DO 11=1,]M
XMAX=AMAXI(XMAX,X(I))
1 XMIN=AMINI(XMIN,X(I))
S=XR/(XMAX-XMIN+1.E-30)
DO 2 I=1,IM
2 X(D=(X0)-XMIN)*S
Cr*#*+ SCALING Y-ARRAY TO RANGE 0 TO 50*YSIZE
YR=50*YSIZE
IM=IMAX
DO 4 J=1,]M
YMAX(J)=-1.E30
YMIN(J)=+1.E30
DO 4 1=1,IM
YMIN(J)=AMIN1(YMIN(J),Y(L,J))
4 YMAX())=AMAX1(YMAX(),Y(LJ))



C

C

C

COMP97.INC

PARAMETER (NIM=100,NJM=38,NPM=30)

PARAMETER (NSTORE=%911)

PARAMETER (NJMP1=NIM+1,NIMP2=NIM+2,NIMM4=NIM-4,
A NIMM6=NIM-6,NIP2NI=NIM*(NIM+2), NIMNIM=NIM*NIM,
B NSTOR!=9804, NST®R2=107)

COMMON
COMMON/COM Y/

A AREA(NIM), BUO(NIM),DIF(NIM},DIFREF(NIM),DPDX(NIM),DPDY{NIM),
D DZ(NIM),DZCELL(NIM),DZCREF(NIM),EMU(NIM),PREE(NIM),

D F(NIM,NJMP2),FLUXLZ(NJM),FLUXHZ(NJM),F%(NIM),GRADSQ(NIM),

I IKBLZ(NIM},IKBHZ(NIM),I TRLZ(NIM},ITRHZ(NIM),IKBOT(NIM),

N ILEVEL(4),NSTPDT(NPM} PHIIN(NIM,NJM),PR PROF(20),PLPROF(20),

P PRSCNU(NIM),PRL(NJM),PRT(NIM),PHIQLZ(NJM),PHIQHZ(NIM},

Q QINFL(NIM),QOUTEL(NIM),OZ(NIM),RECDZ(NIM),

R RHO(NIM),SI(NIM),SIP(NIM),SOL VAR(NIM),STANTN{NIM},

T TFRAC(28),URUP(NIM),URUPUP(NIM),VILZ(NJM),V2LZ(NIM),

T V3LZ(NIM),V4LZ(NIM),V5LZ(NIM),V LHZ(NIM), VZHZ(NIM), V3HZ(NIM),
V V4HZ(NIM),VSHZ(NIM), VST L(NJM}, VST2(NIM),Z(NIM),ZBOUND(NIM),
Z ZST1{NIM),ZST2(NJM),ZBREF(NIM),ZSREF(NIM)

COMMON/COM?Z/

C.----VYARIABLES

C

A AGRAY , AREAHZ,BETA,CAPPA,CORI,CPHEAT,

C CD,CD75,C1,C2,C3,C1PR,C2PR,C3PR,CEXPG,CEXPA,C3B,

C CKSURF,CIRHO,C2RHO,C3RHO,C4RHO,C5RHO,C6RHO,

D DT,DPDXP,.DPDYP,DQ}1,DQ2 EMTMIN,EMUCON ,EMULAM,FLLXRAD,
F FACTHZ FACTLZ FKMIN,FDMIN,GREAT ITYPEF,ITYPEH,ITYPEL,

I IDIMFE,IFIN,ILPLOT,IPROBE,ISTEP,ITEST ITPL.OT,ITURBM,INDPX,

I INDPY,IPRSC,IGRID,INDARE,INDPT,IPSAVEISTPR,INIOUT,

I JLIRHOU,JRHOV,JH,JS,JK,ID JCI,1C2,JC3,1C4, JEMU,JTE KINDAV,

L LSTEP,N,NMI,NM2 .NF,NFP2,NSTAT,NPROF.NPLOTNPROBE,MOVE,
P PL,PFILT,PREEVA,QSURF,RADFRA RHOREF,RTCD,RHOUP,RHOVP,
P ROULLZROULHZ,SRAD, TAUMIN,TU, TINY, TREF, TLAST, TQI,TQ2, TIME,
X XDIM,YDIM,ZDIM,ZSSTRT

LOGICAL SOLVAR,PLPROF,PRPROF,MOVE,INIOUT
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