Manual
Seatrack Web

A user-friendly system for forecasts and backtracking of drift and spreading of oil, chemicals and substances in water

If you, by some reason, can not make an emergency forecast, ask SMHI’s Contingency Centre at the Weather Service to make one. There is open service all day round. Phone +46-11-170104.
1 Introduction and Background ................................................................. 4
  1.1 The circulation model ...................................................................... 4
  1.2 The weather models ...................................................................... 4
  1.3 Ice information .......................................................................... 4

2 Installation of Seatrack Web ................................................................. 5
  2.1 System Requirements .................................................................. 5
  2.2 Java Web start ........................................................................... 5

3 Start and Stop Seatrack Web ................................................................. 6
  3.1 Start ......................................................................................... 6
  3.2 Stop ...................................................................................... 6

4 The graphical user interface ................................................................. 7

5 Calculation parameters and start a calculation ...................................... 9
  5.1 Time ....................................................................................... 9
  5.2 Substance .............................................................................. 9
  5.3 Discharge ............................................................................. 10
  5.4 Scenarios ............................................................................. 11
  5.5 Calculation options ............................................................... 11
  5.6 Calculation info .................................................................... 12
  5.7 Default values .................................................................... 12
  5.8 Compute/Cancel .................................................................... 12
  5.9 Stop ..................................................................................... 12
  5.10 Common Information ........................................................... 12

6 Menus in the upper frame ..................................................................... 13
  6.1 Tool buttons for the map view, Define case, Continue case or Delete case. 15

7 The calculation is ready ....................................................................... 16
  7.1 Visualisation of the result ......................................................... 16
  7.2 Plot the wind, the surface currents and ice .................................. 17
  7.3 Show results in a table or plot ................................................ 18

8 Support ............................................................................................... 20

9 Annex 1 AIS (Automatic Identification System) Shiptracks ................. 21
  9.1 Background ........................................................................... 21
  9.2 Backward calculation from the detected spill site ....................... 21
  9.3 Load AIS data ....................................................................... 22
  9.4 Plot the ship tracks .................................................................. 23
  9.5 Working with the ship tracks .................................................. 24
     9.5.1 Ship tracks .................................................................... 24
     9.5.2 Search area ................................................................... 24
     9.5.3 Ships ........................................................................... 25
     9.5.4 Selecting shiptracks ....................................................... 25
     9.5.5 Draw a line anywhere in the picture .................................. 25
     9.5.6 Extra information ......................................................... 26
9.5.7 Deleting shiptracks ................................................................. 26
9.5.8 Explanation of the table Ships ..................................................... 27
9.5.9 Delete case or AIS data ............................................................. 28
9.5.10 To save a case and show it later in the STW application ............... 28
9.5.11 To save a case and show it without the application ....................... 28
9.6 Tips and info ............................................................................. 29

10 Annex 2 Satellite detections, this does not work .................................. 30
1 Introduction and Background

Seatrack Web is developed at SMHI in close cooperation with the Danish Maritime Safety Administration, the Federal Maritime and Hydrographic Agency and the Finnish Environment Institute. The first version of Seatrack Web was introduced in 1995 and since then Seatrack Web has been used successfully in several oil spill cases. It is also developed further to be a well functioning tool for authorities responsible for oil spill response in the Baltic Sea region.

Seatrack Web’s main purpose is to calculate the spreading of oil that has come out in the Gulf of Bothnia, the Gulf of Finland, the Baltic Sea, the Sounds, the Kattegat, the Skagerack and part of the North Sea (out to 3 E). The program can also be used for other substances than oil, such as chemicals, algae and objects.

In addition to an oil drift forecast, it is possible to make a backward calculation. Then a calculation starts at the position where a substance was found. The programme calculates the drift backwards in time and space and traces the origin of the substance or an object.

1.1 The circulation model

When you login at SMHIs Seatrack Web you have access to forecasted current fields of the Hiromb model (HIgh Resolution Operational Model for the Baltic), which is a 3-dimensional circulation model covering the whole Baltic Sea and part of the North Sea. The forecasts are made daily and up to 5 days forecasts are included into Seatrack Web. Every hour new current fields are used in Seatrack Web for the Hirlam/Hiromb, for ECMWF/Hiromb every 3rd hour.

The horizontal grid resolution is either 1 or 3 nautical miles giving current values at every 1 or 3 nm. In Seatrack Web the forecasted surface currents (0-4 m) can be plotted for 3 nm. Hiromb gives the currents at 50 different depth levels and those influence the drift and spreading of the substance.

1.2 The weather models

The wind forecasts used in Seatrack Web originate from the weather model at the European Centre for Medium-Range Weather Forecasts (ECMWF) 5 days ahead and HiResoluted Limited Area weather Model (HIRLAM 11km) 2 days ahead. The wind forecasts used in Seatrack Web are from 10 meters height. Every hour new wind fields are used in Seatrack Web. The forecasted winds can be plotted.

The user should be aware that smaller scale and local wind effects are not included into the Seatrack Web drift calculations.

1.3 Ice information

Ice and oil interaction was introduced in Seatrack Web during 2005. The user may select the Ice layer and see the ice cover in the Baltic Sea. The accuracy of the forecasted ice cover is enhanced by daily assimilation of ice observations into the Hiromb model.
2 Installation of Seatrack Web

2.1 System Requirements

<table>
<thead>
<tr>
<th>OS</th>
<th>Windows XP, Windows Vista, Windows 7 Linux Red Hat 6, Ubuntu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Processor</td>
<td>1 GHz or more</td>
</tr>
<tr>
<td>Computer memory</td>
<td>512 MB or more</td>
</tr>
<tr>
<td>Screen resolution</td>
<td>1024x768 pixels</td>
</tr>
<tr>
<td>Web browser</td>
<td>Minimum Internet Explorer 8, Firefox 5</td>
</tr>
<tr>
<td>Java</td>
<td>Java 6 from Oracle (not IceTea or other java provider)</td>
</tr>
</tbody>
</table>

2.2 Java Web start

This version runs via 'Java Web start'. This is included in Java and should automatically be installed and used when starting Seatrack Web. If you have not installed java, make sure to install the latest version.
3 Start and Stop Seatrack Web

3.1 Start

Enter the Internet address, which is https://stw-helcom.smhi.se in your Web browser. The manual is found by clicking ‘User manual’. Also ‘Scientific Documentation’ is here. For support, click ‘Contact’, figure 1.

Press ‘Start Seatrack Web’, write User and Password, press Login and the map in Figure 2 appears.

![Seatrack Web start page with Seatrack user news.](image)

**Figure 1.** The Seatrack Web start page with Seatrack user news.

3.2 Stop

If you want to stop Seatrack Web, go to ‘File’ and click ‘Exit’.
4 The graphical user interface

Figure 2. Map over the whole area.

Figure 3. Define a new case.
Define Case, see figure 3.

1. Choose Outlet type:
   - Center point of spill
   - Line spill, a line composed of one or several connected straight lines is possible
   - Spill area, a multicornered polygon
   - Particle positions, make a great number of free particles in the map

Fetch the red star when you want to mark the outlet position in the map. Click *once* for every outlet position. It is possible to move the corners of the spot. You can always add more points between the green points which show the first chosen position and last chosen position. To erase all the positions: *doubleclick*.

![Figure 4. Outlet specified by a polygon which partly covers land.](image)

2. Draw, Import or Add starting point(s)
   - If you want to write the latitude and longitude in the table press ‘Add’. Remember that it is *degrees minutes and decimals of minutes*. You can also ‘Edit’ or ‘Delete point(s)’ that are chosen positions in the table. It is also possible to import an algae file.

Choose Model
   - Hiromb, 3nm, 2 days forecast, HIRLAM
   - Hiromb, 3nm, 5 days forecast, ECMWF
   - Hiromb, 1nm, 2 days forecast, HIRLAM

Calculation Parameters, press this and you will be able to choose the rest of the relevant input information.
5 Calculation parameters and start a calculation

5.1 Time

Figure 5. Start and stop time and outlet depth.

Forward calculation, make a forecast up to 5 days ahead (2 days ahead if you are using forcing from HIRLAM) and start 30 days back in time. Default of Stop time is tomorrow at 24.00 UTC. Default of Start time is present time (now) UTC, Coordinated Universal Time.

Backward calculation, make a calculation backwards in time, to find the place where the oil or object comes from. The Start time now has to be ‘later’ than the Stop time.

Outlet depth is the initial depth of the spill. The depth is given in meters, decimals are possible.

5.2 Substance

In Oil classes there are 3 different viscosity intervals, Light, Medium and Heavy oils. A choice here is recommended if one does not have information about the oil type. See fig. 6. Choosing one of those gives the default values among the oils below

Light: Light Diesel Fuel
Medium: Intermediate Oil
Heavy: Bunker C.
**Figure 6. Choice of viscosity range.**

**State of oil:** you have to select state, if it is new oil choose **Fresh oil**, but if the oil has been in the water for some time, choose **Weathered oil**. Evaporation and emulsification has stopped at the maximum value for **Weathered oil**.

Below **Oil, specific** there are first 11 specified oils to be chosen. Most of those are oil ranges (many different oil types), but it is more specific then Oil classes. This is a possibility, when one has more information about the oil. The densities are fixed to Gasoline 700 kg/m$^3$, Jet fuel and kerosine 802 kg/m$^3$ Light diesel fuel 852.5 kg/m$^3$ Fuel oil no2 852.5 kg/m$^3$ Light-medium crude 864 kg/m$^3$ Lubricating oil 872 kg/m$^3$ Intermediate oil 904 kg/m$^3$ Bunker B 914 kg/m$^3$ Heavy crude 990 kg/m$^3$ Bunker C 982.6 kg/m$^3$ Asphalt 1000 kg/m$^3$. Choose **State of oil**. When Rebco oil is wanted choose Light-Medium Crude. Three oils emulsify: Light-medium crude, Heavy crude and Bunker C.

2 new heavy oils are introduced in a test phase, **Orimulsion (test)** and **High Viscosity Fuel Oil (test)**. The knowledge about these oils is limited, and weathering processes are not activated. The densities are fixed to 1020 kg/m$^3$ (Orimulsion) and 1015 kg/m$^3$ (High Viscosity Fuel Oil).

Below those oils there are 25 oils from Sintef’s Oil Weathering Model. All emulsify except Sleipner (IKU) and Marine Diesel (IKU). Balder (medium), Ekofisk Blend (medium), Grane (medium), Gullfaks (light), Kristin (light), Norne (medium), Oseberg A (light), Sleipner (light), Statfjord A (light), Ula (light), Valhall (light), Aasgard (light), DUC (light), Siri (light), South Arne (medium), Fuel oil no 6 LS (heavy), IF-180 (heavy), IF-380 (heavy), IF-30 Bunker (medium), Marine diesel (light), IFO 380 Fu Shan Hai (heavy).

**Oil lumps** gives 5, 10, 20 cm depth of the oil lumps.

**Floating object / Algae.** Floating algae or Floating object with extra wind drag can then be chosen when the object is partly above the water surface. It is then possible to add an extra wind drag for the part that is above the water surface.

**Objects/substance,** Constant depth or Three dimensional spreading which is a passive tracer.

**5.3 Discharge**

**Instantaneous** spill, the **Amount** is m$^3$ or tonnes. Decimals can be used e.g. 5.7 m$^3$.

**Continuous** spill **Total amount/Rate**. Decimals can be used e.g. 0.4 m$^3$/hour. **Duration** of the spill is given in days or hours.
5.4 Scenarios

If you want to make scenarios (which has nothing to do with reality), choose

**Scenarios with prescribed currents and winds.** The time period that is shown in the window is the same as at Time & Position.

The user fills in the current every hour or at time steps of one’s own choice. Then by pressing FILL, the hours in between the written data are filled with the nearest above information. This gives a possibility to write new currents at fewer time steps then every hour.

The **Current speed** is the current speed in knots. **Current direction** is the current direction (towards) in degrees measured clockwise from north (90 degrees means currents towards east, 180 degrees means currents towards south etc.). Note that the prescribed current will be the same at all locations and at all depths.

The **Wind speed (m/s)** is the speed in m/s. **Wind Direction (degrees from)** is the direction measured clockwise from north (90 degrees means wind from east, 180 degrees means wind from south etc.).

Choose CLEAR to erase all data and give new ones.

5.5 Calculation options

To account for the uncertainty in the weather forecast the user can select **Add uncertainty which depends on uncertainty in the weather forecasts.** When this option is selected the area over which the oil (or substance) is spread during the calculation will increase to reflect the possible spreading of the spill when the uncertainty of the weather forecast is included. Hence, the increased spreading should not be interpreted as a physical process, but as a consequence of the inherent uncertainty in the weather forecast.

Calculation mode gives the possibility to choose **Brief:** 10 particles, **Normal:** 500 particles or **Detailed:** 2000 particles. Sometimes one needs a fast answer and then Brief is recommended. When a high significance is needed many particles will
improve the result. This choice takes a longer time to calculate. Normal is the default value.

### 5.6 Calculation info

![Calculation info](image.png)

Figure 8. The choice of a name of the calculation and a protocol.

**Calculation name** is the name you want to call the case. This is later written in the grey square in the upper left corner of the map. **Other info** is of your own choice.

### 5.7 Default values

Go back to **Default values** in the **Calculation parameters** if needed.

### 5.8 Compute/Cancel

When the parameters are given, press **Compute** and start the calculation. If you want to go back to the map instead of starting a calculation, choose **Cancel**.

### 5.9 Stop

When a calculation is going on ‘Calculation status’ shows the hours where the program is. If you want to stop the calculation, press **Cancel**.

### 5.10 Common Information

Forecasted water temperature and salinity are taken from the Hiromb model and used for viscosity and evaporation. Density is calculated in Seatrack Web based on temperature and salinity. Turbulence is taken from the Hiromb model.

For scenarios the water temperature is a climatological value for each month. Not shown.
6 Menus in the upper frame

The menu in Seatrack Web is similar to the windows system, with some choices at the top of the screen. At the top frame are File, View, Layer, About and News.

File gives the following options:
Open Case - when you want to open an existing calculated case.
Save Case - when you want to save a calculated case. When Save is done you choose the directory yourself. The name of the case must have suffix .xml.
Save Map as image - saves the map in a jpg format.
Email map image - mails the map.
Load AIS data – especially for those having access to AIS data
Clear AIS data - especially for those having access to AIS data. See Annex 1.
Satellite detections of oil spills, does not work at the moment, see Annex 2
Exit

View gives the following options:

Available files – HIROMB 3 nm, 2 days forecast, HIRLAM (every 6th hour) shows which period you can make an oil drift forecast with HIRLAM. Forecasted currents and winds are generated every hour and available 45 days back in time from today at 00.00.
Available files – HIROMB 3 nm, 5 days forecast, ECMWF (every 12th hour) shows which period you can make an oil drift forecast with ECMWF. Forecasted currents and winds are generated every hour and available 7 days back in time from today at 00.00.
Available files – HIROMB 1 nm, 2 days forecast, HIRLAM (every 6th hour) shows which period you can make an oil drift forecast with HIRLAM. Forecasted currents and winds are generated every hour and available 14 days back in time from today at 00.00.
AIS information, see Annex1.
Available AIS data files
AIS ships
Ship info
Input data shows what parameters you have chosen for the calculation.
Results table shows weathering properties, volume, viscosity, density, wind and current data. They can be plotted automatically by your own choice.

Layer, Show/hide layer selection gives the following options

<table>
<thead>
<tr>
<th>Static layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Name, time, layer description</td>
</tr>
<tr>
<td>□ Graphics</td>
</tr>
<tr>
<td>□ Lat/lon grid</td>
</tr>
<tr>
<td>□ Territorial waters</td>
</tr>
<tr>
<td>□ Base line</td>
</tr>
<tr>
<td>□ Bridges</td>
</tr>
<tr>
<td>□ Cities, countries</td>
</tr>
<tr>
<td>□ Danish economic zones</td>
</tr>
<tr>
<td>□ Maris response zones</td>
</tr>
<tr>
<td>□ Country borders</td>
</tr>
<tr>
<td>□ Baltic Sea protected areas</td>
</tr>
<tr>
<td>□ Important bird areas</td>
</tr>
<tr>
<td>□ Major ship routes</td>
</tr>
<tr>
<td>□ Ship traffic separation</td>
</tr>
<tr>
<td>□ Text on map</td>
</tr>
</tbody>
</table>

When this check box is selected a label for each selected layer is shown.

Name & Time & Layer description means the grey square in the upper left corner of the map, showing the name of the calculation, the time it is made and the time of the result, see below.

Static layers
- Graphics, makes it possible to draw green lines anywhere in the map
- Lat/lon grid, plot the latitude and longitude grid
- Boundary for Territorial waters, shows this border for all countries
- Base line, shows this border along the Swedish coast
- Bridges, the Öresound bridge and the bridge to Öland
- Cities and countries, names
- Danish economic zone
- Country borders
- Baltic Sea Protected Areas, BSPA
- Important Bird Areas, IBA
- Major ship routes
- Ship traffic separation

Dynamic layers
- Satellite outlet plot
- Hiromb coastline, plot the outer border of the model’s grid
- Hiromb Depth, coloured depth information.

About
- About Seatrack Web
- Contact, Contact persons
News
This is a new option which pops up at the screen when you see it the first time, the next time you log in you can read it here.

6.1 Tool buttons for the map view, Define case, Continue case or Delete case.

Arrow shows an arrow where the cursor is.
Zoom is a zooming tool, it is important that the area chosen has the cursor/cross in the lower right corner and not further down in the map. Otherwise another area is zoomed. Center symbol gives the possibility to move the map on the screen, where you put the symbol, the new center will appear.
Zoom in gives one step zoom every time you click in the map.
Zoom out gives one step zoom out for every click in the map.

Maximize scale in current window, gives the whole map back.

Set map scale, choose your own scale and centre point. Scale, Centre (lower left) shows your scale and centerpoint. If you later want to have the same map area.

Add, edit or delete text on map

Draw lines draw a green line, take away by doubleclick
Distance shows the distance in nautical miles and bearing (angle measured clockwise from north) below the map. You stop this by a double-click.
Show/hide layer selection opens the window with the GIS layers.

Define Case, opens the window where you give: Outlet type, Starting points, Model choice, Calculation parameters.

Continued Case, continue a calculation, which is just made. A default suggestion stop time comes up, giving one more day.
You can also continue a calculation that has been made earlier and saved in Save case below File, then go to File and press Open Case. You are asked where the saved file is, and copy it to STW.

Most of the information in the Calculation parameters is given from the earlier executed forecast in the saved case and can therefore not be changed. If the result from an earlier made forecast is verified against observations and there is a discrepancy between the last calculated position and the observation, the starting position can be altered in Centre position by giving new Latitude and Longitude there. New Stop time must be given, as the forecast now is prolonged from the previous forecast. The start time of the Continued Case is the stop time of the previous case and the new stop time is by default one day further ahead. This can be altered. New Other info below Calculation info can be written.
Delete case, return to default settings in Define Case.

Position information and scale in the lower left corner. You can see any position when moving the cursor in the map and the chosen scale.

## 7 The calculation is ready

![Map showing oil spill](image)

**Figure 9. Result showing that the oil stops at the coastline.**

Figure 9 is shown when a calculation is ready. It shows how the oil stops at the coastline and clearly shows the areas that are threatened.

This scale, shown in lower right corner, gives information about the depth intervals where there is oil. Red is at the surface. Green is below the surface and less than 1 meter depth. Yellow is deeper than 1 meter and less than 5 meters. And so on.

### 7.1 Visualisation of the result

![Depth intervals scale](image)

These parts of the upper frame are active when a calculation is made.
**Trajectory ON/OFF**– draws a line through the centre positions of the spots every hour. To erase the trajectory click **Trajectory** again. Time, date and position are written every 15 minute if there is space. If you then zoom, more data will be written.

![Image of Trajectory in a zoomed area.](image)

**Figure 7. Trajectory in a zoomed area.**

**Trace ON/OFF** and **Animate** – all the results from the forecast are shown automatically once an hour. To the left of Animate is **Trace**, which means that one sees every 15 minute spot in the same view. The time of the animation is shown in the popup menu to the right. You can stop Animation by clicking **Animate** again.

To look at each spot specifically use **Start spot**. Choose **Step+1** to step 15 minutes in a forward calculation. The choice **Step–1** steps one hour backward in a forward calculation. **End spot** gives the spot of the last time step. Simultaneously one can see the time of the actual spot in the popup menu and at ‘Now showing’ in the information square in the upper left corner of the map. The popup menu can be used instead of the steps.

**7.2 Plot the wind, the surface currents and ice**

**Show wind** plots the 10 meter wind. In a zoomed area every 5th value is plotted. When you have the full map every arrow is plotted. The scale is given in the upper left corner of the map. Choose the time from which you want the plot. You can only look at a time covered by a made calculation. If you want to look at an earlier made saved calculation, then the data might be taken away and they can not be plotted.

The wind can be animated when you animate the oil spill. Click ‘**Show wind**’ and click ‘**Animate**’.
Show surface currents, plots the surface current, see figure 8. In a zoomed area every 5th value is plotted. The scale is given in the upper left corner of the map. The surface current can be animated when you animate the oil spill. Click ‘Show surface currents’ and click ‘Animate’.

The ice can be animated when you animate the oil spill. Click ‘Show ice’ and click ‘Animate’.

Figure 8. Surface currents in a zoomed area. The ice cover in the Riga Bay has a vital influence on the currents.

7.3 Show results in a table or plot

View is shown in the upper frame.
Input data shows the data you chose for the forecast
Results table gives all the calculated data in ‘ready to make’ plots.

You can make a plot of the oil’s different states by marking the wanted variables and press Create chart down to the left. The sum of those makes 100%. It is possible to plot the other variables such as viscosity and so on by clicking the wanted variables and press Create chart. Or make your own plot, by copying the table.
Figure 9. Example of plot when oil is chosen.

Figure 10. Example of plot when oil is chosen.
8 Support

Calculation problems, customer relations
Cecilia Ambjörn, Oceanographer, 011-4958174, 0709-784488.
Email: Cecilia.Ambjorn@smhi.se

System or installation problems
Lina Ettling, Application Manager
Email: seatrack-support@smhi.se

SMHI, 60176 Norrköping, Sweden
Phone +46-11-4958000, Fax: +46-11-4958001
9 Annex 1  
AIS (Automatic Identification System) Shiptracks

The AIS information is available when you are authorized by Helcom and implemented by the Seatrack Web administrator, SMHI, cecilia.ambjörn@smhi.se. Check this by looking in the File menu if Load AIS data is not shown, you have no access.

9.1 Background

The AIS functionality in Seatrack Web is a tool to identify the ship which causes an oil spill. The AIS function gives the shiptracks in the area where the spill was detected and backwards to its probable origin. By using the shiptracks simultaneously with the oiltracks the probability to indentify a suspected ship increases.

9.2 Backward calculation from the detected spill site

Before you can load AIS data you must have a calculated case (backwards) to work with. The case is created by making a Backward calculation where the positions of the spill are given by clicking in the map or written in the table. Go to Calculation parameters.
Choose Backward calculation. Give the relevant Start and Stop time. Maximum 5 days can be loaded, even if more data exist. Press Compute.

Check that AIS data are available choose: View and Available AIS data files. It shows data 30 days back.
9.3 Load AIS data

Go to the File menu and select Load AIS data.

A pre-filled dialog appears. You can choose a size of the square relevant for the situation.

**Start time**: Default time is the Start time of your Backward calculated case.

**Stop time**: Default time is the Stop time of your Backward calculated case. This can be prolonged if wanted. If a long period is chosen it takes a very long time to collect data. Therefore less then 3 days is recommended.

**Square search area** and **Size of square (n.m.)**: The search area is a square and it follows the centre point of the moving oil slick. Default: 12 n.m. is plus/minus 6 n.m. around the centre point in all directions. Can be modified.

Press ‘Load AIS data’ and retrieve AIS data. An information dialog showing that the system is active is now shown in upper right corner of the screen.

After this you can click ‘User defined search area’ and make a new area of your own choice. You can now move the corners using the arrow. Load AIS data again to retrieve new AIS data.
9.4 *Plot the ship tracks*

A dialog appears showing how many ship tracks that were found. If no ships are found make a larger search area or a larger time interval. If you still get no ships then AIS data is not available for this time or a problem has occurred. If you get hundreds of hits you must narrow the area or shorten the time interval.

If data are missing, because of technical reasons please contact the SMHI. This shall not happen.

In the figure there was 1 file missing of the 238 files (every 15 minute) in the area during the chosen time period.

![Info dialog showing ship tracks](image)

Press **OK** and the ship tracks are shown on the screen.

When searching for interesting ships, the backward oiltrack can be followed. Recommended is to step the spot every 15 minute. It can also be animated, but that is just to get an overview.

The information covers the period between the chosen **Start time** and **Stop time** and identifies all the ships that were inside the chosen yellow search area. This search area moves with the oil slick to show the ships that were in the vicinity of the oil. If the search area is increased more ship tracks will turn up.

**Note:** The chosen size of the search area must be large enough so ships can not pass through the yellow search area. In that case ships might be missed. And small enough not to get too many ship tracks.
9.5 Working with the ship tracks

Example of ship tracks and an oil spill.

9.5.1 Ship tracks

Ship tracks are drawn as lines with one small cross every 15 minutes. That means that about every 2nd position from the AIS database (data exist every 6th minute) is plotted. If you zoom out, the crosses are not shown. If there are no crosses, zoom in and they will appear.

The crosses are black or pink. If black then this point comes from real data. If pink then no information was available and the track is interpolated linearly between the previous real point and the next real point. AIS data are sometimes missing in some areas and then the analysis here are uncertain. In order to show data from the ship in the area anyhow, a track is interpolated. Interpolated track is dashed.

Colour of a shiptrack is grey, black or red. Normally the colour is grey. The shiptrack becomes black at the moment when the ship is close to the spill, at the time when the ship is inside a defined AIS search area presented with yellow on the screen. You may click a gray shiptrack once and the colour turns into red. Then you are able to see the time information at each cross. At the cross where the mouse is located when clicking at the line is also shown the position and MMSI number. See an example of a red shiptrack in the figure above.

9.5.2 Search area

You will see a yellow area around the centre point of the spill. This is the search area. It follows the spill if you step forward or backward or animate the spill.
9.5.3 Ships

The position of the ship is drawn as a green triangle on the shiptrack. This symbol will move if you step forward or backward or animate the spill. When the ship is within the yellow search area the track is black and close to the spill at this time.

9.5.4 Selecting shiptracks

Arrow tool

First select the **Arrow tool** in the menu furthest to the left. To show the time of a ship track, make one quick click on the track. A selected shiptrack is red, it is black if the ship is close to a spill.

Normally time (hh:mm) is displayed every 15 minutes. If these texts are too close together then some will be hidden. Both date and time are shown for midnights (yyyy-mm-dd hh:mm). When you click on a point using the arrow tool more information will be shown such as date, time, position and the ship’s MMSI number. This shows also when you click on an interpolated part of the track.

9.5.5 Draw a line anywhere in the picture

You can draw a line anywhere in the picture. Choose **Draw lines**. Keep the button down where the line shall start and during the whole line. The coordinates follow the mouse, so you can choose how to draw the line. The line is green in the application, see figure below. Take it away by activating the icon and double-click on the line. When you save a case the line is not saved.
### 9.5.6 Extra information

Tracks with black crosses have more information about the ship in the track.

Select the track you want more ship information about by clicking at a small cross and select **View** in the menu and **Ship Info**. Sometimes there is too little data, then go along the track and click on another cross. Then the dialog below comes up.

![Ship Info dialog](image)

When you choose **Save info** use the prefix .txt after the name of the file.

### 9.5.7 Deleting shiptracks

To remove a shiptrack from the screen, **double-click** on it. But to take away the right track, you have to double-click at a cross at the chosen track and have the very point of the arrow close to the cross, otherwise the wrong track might be deleted. If you want it back, go to the table **AIS ships**, click the line with the ship, it becomes blue, and press **Delete/undelete** in the left bottom, see figure below.

You can also delete a ship track by taking it away in a table, where all ship tracks are shown. Go to View and **AIS ships**, press **Delete/undelete** in the **AIS ships** table. When deleted it is shown by **YES** in the first column in the table.
9.5.8 Explaination of the table Ships

The small boxes below the table
Delete/undelete a track, explained above.
Save table, use the prefix .txt after the name.
Press a line with a ship, it gets blue, then choose Ship info and that track becomes red in the map and the table Ship Info for that ship comes up.

Edit ship track, (only for advanced users). This makes it possible to add data from the log book, when there is interpolated/no data in the AIS information. Interpolated data is shown in the table AIS signal with a No. Doubleclick on the position you want to change, the background becomes white. Write the new number. Press Enter. Press Save in the bottom of the table. The track is now altered in the map.

Show track in map makes that track black in the map. It must then be marked as Undeleted in the first column.
The columns
The first 5 columns, see head of column. The 6-7\(^{th}\) column show the time a ship enters the search area, \textit{Entering area}, and the time it leaves the search area, \textit{Exiting area}.

9.5.9 Delete case or AIS data
You can delete the oil backtracking case and the AIS data, by clicking the cross in the upper frame: \textbf{Delete case}.

Delete AIS data by clicking \textbf{Clear AIS data}

9.5.10 To save a case and show it later in the STW application.
Click Save Case below File, you choose the directory yourself. \textbf{The name of the case must have suffix .xml if you have Java 1.6 or higher.}
This means that you can show this at any time, with animation of both AIS and the oil.

9.5.11 To save a case and show it without the application
If you want to save the case and show it at a later occasion and not in connection with the STW application. Then there is a software called Snag-It which can be used. The case can be copied to a cd for example.
9.6 Tips and info

Normally when analyzing a case you probably start at the located oil spill, and then step back in time and check and analyze all ships highlighted in black until ready.

Make the search time as short as possible to reject ships that are not interesting.

For example:
If the oil spill covers a large area then the spill is at least X hours old. If information exists that the spill was not present at an earlier time then this time is the stop time. Ships passing this point before this time are not interesting.

If a ship has been identified as a prime suspect at a certain time then it is possible to create a Forward case to see if the size of the spill will create a spill as the one found. Then momentaneous or continuous can be chosen.

Depending on the length of the time period or uncertainty of the spills trajectory you may need to increase the search square to find the suspect.

When analyzing it can be necessary to use a smaller square so you don’t miss fast going ships or catch ships that have been interpolated for a long time and therefore show an uncertain track.

If you get quite a lot of hits when loading AIS data for a case you may decide to split the analysis in two (or more) parts. Set the time period to a smaller interval and do the analysis in separate steps instead. For example: Analyse the last day first and then the previous day after that separately.

The system interpolates to fill in where the ships were between known positions. This works well if the AIS information is not lost for very long times. In that case the ships true course may differ from the interpolated track.

A ship track may seem to start or stop in the middle of the sea. This is because of the chosen start and stop time.

The position may be lost for some time at the end of the search period. Then the system has no chance to interpolate the positions at the end. In this case it is possible that the ship is not included in the search.

The crosses on the ship tracks show the latest known 6 minute position each whole 15 minutes. (This gives some uncertainty for the position along the track but this should not be a big problem.)
10  Annex 2
Satellite detections, this does not work

Satellite detections of oil spills - only for those having access to satellite data. You can choose a period (From-To) during which you want to see all detected oil spills. Press Search. Delete detections from map, takes away the detections. This is only available for users working with ‘finding illegal polluters’.

Information about the satellite detections.

Locate show the spill in the map. ID a STW number to identify the spill in the map, Confidence low, medium, high, Area (km2), Length (km) of spill, Satellite name, Observations time (UTC).
Exit - close the application.