2022
Andersson, J. C. M., Olsson, J., van de Beek, R. (C. Z. )., and Hansryd, J.: OpenMRG: Open data from Microwave links, Radar, and Gauges for rainfall quantification in Gothenburg, Sweden(2022), Earth Syst. Sci. Data, 14, 5411–5426, https://doi.org/10.5194/essd-14-5411-2022
Arciniega-Esparza, S., Birkel, C., Chavarria-Palma, A., Arheimer, B., Agustin Brena-Naranjo, J., Remote sensing-aided rainfall-runoff modeling in the tropics of Costa Rica (2022). Hydrology and Earth System Sciences, Vol. 26, issue 4, p. 975-999, https://doi.org/10.5194/hess-26-975-2022
Arnbjerg-Nielsen, K., Gain, A.K., Keskinen, M., Varis O., McKnight, U.S., To what extent should we ensure the explicit inclusion of water quality within the WEF nexus? Discussion of “Water quality: the missing dimension of water in the water–energy–food nexus” (2022), Hydrological Sciences Journal, Vol. 67, issue 8, p. 1287-1290, https://doi.org/10.1080/02626667.2022.2077651
Berg, P., Bosshard, T., Yang, W., and Zimmermann, K., MIdASv0.2.1 – MultI-scale bias AdjuStment (2022), Geosci. Model Dev., Vol.15, Issue 15, p. 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022
Du, T. L. T., Lee, H., Bui, D. D., Graham, L. P., Darby, S. D., Pechlivanidis, I. G., et al. Streamflow prediction in highly regulated, transboundary watersheds using multi-basin modeling and remote sensing imagery (2022). Water Resources Research, Vol 58, Issue 3:e2021WR031191. https://doi.org/10.1029/2021WR031191
Elenius, M., Lindström, G., Introduced flow variability and its propagation downstream of hydropower stations in Sweden (2022), Hydrology Research, Vol. 53, issue 11, p. 1321-1339, https://doi.org/10.2166/nh.2022.138
Fuentes-Andino, D., Hundecha, Y., Lindström, G., Olsson, J., Exploring the potential for parameter transfer from daily to hourly time step in the HYPE model for Sweden (2022), Hydrological Sciences Journal, Vol. 67, issue 13, p. 1988-2001, https://doi.org/10.1080/02626667.2022.2121165
Glaas, E., Bohman, A., Karlson, M., Navarra, C., Olsson, J., Hundecha, Y., et al. (2022). Development and user testing of the ICT-platform Visual Water supporting sustainable municipal stormwater planning, Urban Water Journal, Vol. 19, issue 9, p. 962-974, https://doi.org/10.1080/1573062X.2022.2108850
Graham, L.P., Andersson, L., Toucher, M.W., Wikner, J.J. and Wilk, J., Seasonal local rainfall and hydrological forecasting for Limpopo communities – a pragmatic approach (2022), Climate Services, Vol. 27, 100308, https://doi.org/10.1016/j.cliser.2022.100308
Hall, C. A., Saia, S. M., Popp, A., et al. A hydrologist's guide to open science (2022). Hydrology and Earth System Sciences, Vol. 26, issue 3, p. 647-664, DOI: 10.5194/hess-26-647-2022
Hallerback, S., Huning, L. S., Love, C., and Persson, M., Stensen, K., Gustafsson, D. and AghaKouchak, A., Climate warming shortens ice durations and alters freeze and break-up patterns in Swedish water bodies (2022). The Cryosphere, Vol. 16, issue 6., p.2493-2503, https://doi.org/10.5194/tc-16-2493-2022
Heal, K.V., Bartosova, A., et al. Ensuring consideration of water quality in nexus approaches in the science–practice continuum: reply to discussion of “Water quality: the missing dimension of water in the water–energy–food nexus?” (2022) Hydrological Sciences Journal, Vol. 67, issue 8, p.1291-1293, https://doi.org/10.1080/02626667.2022.2077652
Joelsson, L. Magnus T., Christophe Sturm, Johan Södling, Erik Engström, and Erik Kjellström. ‘Automation and Evaluation of the Interactive Homogenization Tool HOMER’. International Journal of Climatology 42, no. 5 (2022): 2861–80. https://doi.org/10.1002/joc.7394.
Koelemeijer, I.A., Ehrlén, J., Jönsson, M., De Frenne, P., Berg, P., et al. Interactive effects of drought and edge exposure on old-growth forest understory species (2022). Landsc Ecology 37, p.1839–1853. https://doi.org/10.1007/s10980-022-01441-9
Kulinski, K., Rehder, G., Asmala, E., and Bartosova, A., et al. Biogeochemical functioning of the Baltic Sea (2022), Vol.13, issue 1, p.633-685, https://doi.org/10.5194/esd-13-633-2022
de Lavenne, A., Andréassian, V., Crochemore, L., Lindström, G., and Arheimer, B.: Quantifying multi-year hydrological memory with Catchment Forgetting Curves (2022), Hydrol. Earth Syst. Sci., Vol. 26, issue 10, p. 2715–2732, https://doi.org/10.5194/hess-26-2715-2022
de Lavanne, A., Lindström, G., Strömqvist, J., Pers, C., Bartosova, A., and B. Arheimer, 2022. Evaluation of overland flow modelling hypotheses with a multi-objective calibration using discharge and sediment data. Hydrological Processes 36(12). DOI: 10.1002/hyp.14767
Law, J. Y., Long, L. A., Kaleita, A., Helmers, M., Brendel, C., et al. Stacked conservation practices reduce nitrogen loss: A paired watershed study (2022). Journal of Environmental Management, Vol. 302, https://doi.org/10.1016/j.jenvman.2021.114053
Lemaire, G.G., Rasmussen, J.J., Höss, S., Kramer, S.F., Schittich, A., Zhou, Y., Köppl, C.J., Traunspurger, W., Bjerg, P.L., McKnight, U.S.,Land use contribution to spatiotemporal stream water and ecological quality: Implications for water resources management in peri-urban catchments (2022), Ecological Indicators, Vol. 143, id:109360, https://doi.org/10.1016/j.ecolind.2022.109360
Lienert, J., Andersson, J. C. M., Hofmann, D., Silva Pinto, F., and Kuller, M. The role of multi-criteria decision analysis in a transdisciplinary process: co-developing a flood forecasting system in western Africa (2022), Hydrol. Earth Syst. Sci., Vol. 26, p. 2899–2922, https://doi.org/10.5194/hess-26-2899-2022.
Ma, J., Ju, Q., Du, Y. et al. Assessing precipitation variations in the Yangtze River Basin during 1979–2019 by vertically integrated moisture flux divergence (2022). Nat Hazards 114, 971–987, https://doi.org/10.1007/s11069-022-05419-3
Machefer, M., Perpinya-Valles, M., Escorihuela, M., Gustafsson, D. and Romero, L. Challenges and Evolution of Water Level Monitoring towards a Comprehensive, World-Scale Coverage with Remote Sensing (2022). Remote Sensing, Vol. 14, issue 15:3513. https://doi.org/10.3390/rs14153513
Naseri-Rad, M., Berndtsson, R., Aminifar, A., McKnight, U. S., et al. DynSus: Dynamic sustainability assessment in groundwater remediation practice (2022). Science of The Total Environment, Vol 832, id:154992, https://doi.org/10.1016/j.scitotenv.2022.154992
Meier, H. E. M., Kniebusch, M., Dieterich, C., Groeger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M. P., Bartosova, A., Bonsdorff, E., and Boergel, F. and Capell, R., et al. Climate change in the Baltic Sea region : a summary (2022), Vol. 13, issue 1, p. 457-593, https://doi.org/10.5194/esd-13-457-2022.
Mohtashami S, Thierfelder T, Eliasson L, Lindström G, Sonesson J. Use of Hydrological Models to Predict Risk for Rutting in Logging Operations. Forests. 2022; 13(6):901. https://doi.org/10.3390/f13060901
Olsson, J., Dyrrdal, A.V., Médus, E., Södling, J., et al. Sub-daily rainfall extremes in the Nordic–Baltic region (2022). Hydrology Research, Vol 53, issue 6, p. 807–824. https://doi.org/10.2166/nh.2022.119
Papacharalampous, G., Tyralis, H., Pechlivanidis, I.G., Grimaldi, S., Volpi,E., Massive feature extraction for explaining and foretelling hydroclimatic time series forecastability at the global scale (2022), Geoscience Frontiers, Vol. 13, Issue 3:101349, https://doi.org/10.1016/j.gsf.2022.101349
Rosbjerg, D., Engeland, K., Forland, E., and Haghighi, A.T., Mehr, A.D., Olsson, J., Nordic contributions to stochastic methods in hydrology (2022), Hydrology Research, Vol. 53, issue 6, p. 840-866), https://doi.org/10.2166/nh.2022.137
Santos, L., Andersson, J.C.M., and Berit Arheimer (2022) Evaluation of parameter sensitivity of a rainfall-runoff model over a global catchment set, Hydrological Sciences Journal, 67:3, 342-357, https://doi.org/10.1080/02626667.2022.2035388
Sebok, E., Henriksen, H. J., Pastén-Zapata, E., Berg, P., Thirel, G., Lemoine, A., Lira-Loarca, A., Photiadou, C., Pimentel, R., Royer-Gaspard, P., Kjellström, E., Christensen, J. H., Vidal, J. P., Lucas-Picher, P., Donat, M. G., Besio, G., Polo, M. J., Stisen, S., Caballero, Y., Pechlivanidis, I. G., Troldborg, L., and Refsgaard, J. C.,Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies (2022), Hydrol. Earth Syst. Sci., Vol. 26, issue 21, p. 5605–5625, https://doi.org/10.5194/hess-26-5605-2022
Seibert, J., Bergström, S., A retrospective on hydrological catchment modelling based on half a century with the HBV model (2022), Hydrology and Earth System Sciences, Vol. 26, issue 5, p. 1371-1388, https://doi.org/10.5194/hess-26-1371-2022
Schittich, A., McKnight, U., Stedmon, C., and Smets, B. F., Assessing the substrate specificity of a micropollutant degrading strain: generalist or specialist? (2022), Environmental Science: Processes & Impacts, Vol. 24, issue 11, p. 2140-2152, https://doi.org/10.1039/D2EM00197G
Viti, M., Löwe, R., Sørup, H.J.D., Rasmussen, M., Arnbjerg-Nielsen, K., McKnight, U. S., Knowledge gaps and future research needs for assessing the non-market benefits of Nature-Based Solutions and Nature-Based Solution-like strategies (2022), Science of The Total Environment, Vol. 841, https://doi.org/10.1016/j.scitotenv.2022.156636
Wang, Q., Ju, Q., Wang, Y., Fu, X., Zhao, W., Du, Y., Jiang, P., Hao, Z. Regional Patterns of Vegetation Dynamics and Their Sensitivity to Climate Variability in the Yangtze River Basin (2022). Remote Sensing. Vol. 14, issue 21:5623. https://doi.org/10.3390/rs14215623
White, C. J., Domeisen, D.I., ….., Pechlivanidis, I., et al. Advances in the Application and Utility of Subseasonal-to-Seasonal Predictions (2022), Bulletin of The American Meteorological Society - (BAMS), Vol. 103, issue 6, p. E1448-E1472, https://doi.org/10.1175/BAMS-D-20-0224.1
2021
Bartosova, A., Arheimer, B., De Lavenne, A., Capell, R., Strömqvist, J. Large-Scale Hydrological and Sediment Modeling in Nested Domains under Current and Changing Climate (2021). Journal of hydrologic engineering, Vol. 26, issue 5, DOI: 10.1061/(ASCE)HE.1943-5584.0002078
Berg, P., Almén, F., Bozhinova, D. HydroGFD3.0 (Hydrological Global Forcing Data): a 25 km global precipitation and temperature data set updated in near-real time (2021). Earth System Science Data, Vol. 13, issue 4, p. 1531-1545, DOI: 10.5194/essd-13-1531-2021
Birkel, C., Dehaspe, J., Chavarria-Palma, A., Venegas-Cordero, N., Capell, R., Duran-Quesada, A. Projected climate change impacts on tropical life zones in Costa Rica (2021). Progress in physical geography, DOI: 10.1177/03091333211047046
Brendel, C., Dymond, R. L., Aguilar, M. F., (2021) Modeling Storm Sewer Networks and Urban Flooding in Roanoke, Virginia with SWMM and GSSHA. Journal of Hydrologic Engineering, Vol. 26, issue 1, DOI: 10.1061/(ASCE)HE.1943-5584.0002021
Capell, R., Bartosova, A., Tonderski, K., Arheimer, B., et al. From local measures to regional impacts: Modelling changes in nutrient loads to the Baltic Sea (2021). Journal of Hydrology: Regional Studies, Vol 36. DOI: 10.1016/j.ejrh.2021.100867
Crochemore, L., Cantone, C., Pechlivanidis, I. , Photiadou, C. How Does Seasonal Forecast Performance Influence Decision-Making?: Insights from a Serious Game (2021). Bulletin of The American Meteorological Society (BAMS), Vol. 102, issue 9, p E1682-E1699. DOI: 10.1175/BAMS-D-20-0169.1
Dyrrdal, A. V., Olsson, J., et al. Observed changes in heavy daily precipitation over the Nordic-Baltic region (2021). Journal of Hydrology: Regional Studies, Vol. 38, DOI: 10.1016/j.ejrh.2021.100965
Elenius, M.T. and Gasda, S.E., Convective mixing with non-monotonic density (2021).Transport in porous media, 138:133-155. https://doi.org/10.1007/s11242-021-01593-3
Fowler, H., Ali, H., Allan, R. P., Ban, N., Barbero, R., Berg, P., et al. Towards advancing scientific knowledge of climate change impacts on short-duration rainfall extremes (2021). Philosophical Transactions. Series A: Mathematical, physical, and engineering science, Vol. 379, issue 2195, DOI: 10.1098/rsta.2019.0542
Fowler, H., Lenderink, G., Prein, A. F., Westra, S., Ban, N., Barbero, R., Berg, P., et al. Anthropogenic intensification of short-duration rainfall extremes (2021). NATURE REVIEWS EARTH & ENVIRONMENT, Vol. 2, issue 2, p. 107-122, DOI: 10.1038/s43017-020-00128-6
Girons, M., Crochemore, L., Pechlivanidis, I. Benchmarking an operational hydrological model for providing seasonal forecasts in Sweden (2021). Hydrology and Earth System Sciences, Vol. 25, issue 3, p. 1189-1209, DOI: 10.5194/hess-25-1189-2021
Granath, G., Evans, C.D., Strengbom, J., Folster, J., Grelle, A., Strömqvist, J., Kohler, S. J. The impact of wildfire on biogeochemical fluxes and water quality in boreal catchments (2021). Biogeosciences, Vol. 18, nr 10, p. 3243-3261, DOI: 10.5194/bg-18-3243-2021
Kiesel, J., Stanzel, P., Kling, H., Fohrer, N., Jahnig, S. C., Pechlivanidis, I. Streamflow-based evaluation of climate model sub-selection methods (vol 163, pg 1267, 2020) (2021). Climatic Change, Vol. 169, issue 3-4, DOI: 10.1007/s10584-021-03252-4
Lebedeva, L., Gustafsson, D. Streamflow Changes of Small and Large Rivers in the Aldan River Basin, Eastern Siberia (2021). Water, Vol. 13, issue 19, DOI: 10.3390/w13192747
Lemaire, G. G., Carnohan, S. A., Grand, S., Mazel, V., Bjerg, P. L., McKnight, U. Data-Driven System Dynamics Model for Simulating Water Quantity and Quality in Peri-Urban Streams (2021). Water, Vol. 13, issue 21, DOI: 10.3390/w13213002
Lucas-Picher, P., Argueso, D., Brisson, E., Tramblay, Y., Berg, P., et al. Convection-permitting modeling with regional climate models: Latest developments and next steps (2021). Wiley Interdisciplinary Reviews: Climate Change, DOI: 10.1002/wcc.731
Nguyen, V. D., Merz, B., Hundecha, Y., et al. Comprehensive evaluation of an improved large-scale multi-site weather generator for Germany (2021). International Journal of Climatology, DOI: 10.1002/joc.7107
Olsson, J., Berg, P., and van de Beek, R.: Visualization of radar-observed rainfall for hydrological risk assessment (2021). Adv. Sci. Res., 18, p 59–64, DOI: 10.5194/asr-18-59-2021
Olsson, J., Du, Y., et al. An Analysis of (Sub-)Hourly Rainfall in Convection-Permitting Climate Simulations Over Southern Sweden From a User's Perspective (2021). FRONTIERS IN EARTH SCIENCE, Vol. 9, DOI: 10.3389/feart.2021.681312
Photiadou, C., Arheimer, B., Bosshard, T., Capell, R., Elenius, M., Gallo, I., Gyllensvärd, F., Klehmet, K., Little, L., et al. Designing a Climate Service for Planning Climate Actions in Vulnerable Countries (2021). Atmosphere, Vol. 12, issue 1, DOI: 10.3390/atmos12010121
Pimentel, R., Arheimer, B. Hydrological impacts of a wildfire in a Boreal region: The Vastmanland fire 2014 (Sweden) (2021). Science of the Total Environment, Vol. 756, DOI: 10.1016/j.scitotenv.2020.143519
Schmith, T., Thejll, P., Berg, P., et al. Identifying robust bias adjustment methods for European extreme precipitation in a multi-model pseudo-reality setting (2021). Hydrology and Earth System Sciences, Vol. 25, issue 1, p. 273-290, DOI: 10.5194/hess-25-273-2021
Stadnyk, T. A., Tefs, A., Broesky, M., Dery, S. J., Myers, P. G., Ridenour, N. A., Koenig, K., Vonderbank, L., Gustafsson, D. Changing freshwater contributions to the Arctic: A 90-year trend analysis (1981-2070) (2021). Elementa: Science of the Anthropocene, Vol. 9, issue 1, DOI: 10.1525/elementa.2020.00098
Uvo, C. B., Foster, K., Olsson, J. The spatio-temporal influence of atmospheric teleconnection patterns on hydrology in Sweden (2021). Journal of Hydrology: Regional Studies, Vol. 34, DOI: 10.1016/j.ejrh.2021.100782
Weigel, K., Bock, L., Gier, B. K., Lauer, A., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., et al. Earth System Model Evaluation Tool (ESMValTool) v2.0-diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP (2021). Geoscientific Model Development, Vol. 14, issue 6, p. 3159-3184, DOI: 10.5194/gmd-14-3159-2021
Zhang, J., Pohjola, V., Pettersson, P., Norell, B., Marchand, W. D., Clemenzi, I., Gustafsson, D., (2021), Improving the Snowpack Monitoring in the Mountainous Areas of Sweden from Space: A Machine Learning Approach, Environmental Research Letters, Vol. 16, issue 8, DOI: 10.1088/1748-9326/abfe8d
Ziogas, A. I., Pechlivanidis, I., et al. Climate service derived indicators to assess the impact of climate change on local river assimilative capacity (2021). Climate Services, Vol. 23, DOI: 10.1016/j.cliser.2021.100250
2020
Andersson, L., Wilk, J., Graham, P., et al. (2020): Local early warning systems for drought – Could they add value to nationally disseminated seasonal climate forecasts? Weather and Climate Extremes, Vol. 28, https://doi.org/10.1016/j.wace.2019.100241
Arheimer, B., Pimentel, R., Isberg, K., Crochemore, L., Andersson, J. C. M., Hasan, A., and Pineda, L. (2020): Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation, Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020.
Carolus, J.F., Bartosova, A., et al. (2020): Nutrient mitigation under the impact of climate and land-use changes: A hydro-economic approach to participatory catchment management, Journal of Environmental Management, Volume 271, 2020, https://doi.org/10.1016/j.jenvman.2020.110976
Chen, D., Rodhe, H., Emanuel, K., Seneviratne, S.I., Zhai, P., Allard, B., Berg, P., et al. (2020): Summary of a workshop on extreme weather events in a warming world organized by the Royal Swedish Academy of Sciences. Tellus B: Chemical and Physical Meteorology, 72:1, 1-13, https://doi.org/10.1080/16000889.2020.1794236
Contreras E, Herrero J, Crochemore L, Aguilar C, Polo MJ. Seasonal Climate Forecast Skill Assessment for the Management of Water Resources in a Run of River Hydropower System in the Poqueira River (Southern Spain). Water. 2020; 12(8):2119. https://doi.org/10.3390/w12082119
Contreras E, Herrero J, Crochemore L, Pechlivanidis I, Photiadou C, Aguilar C, Polo MJ. (2020): Advances in the Definition of Needs and Specifications for a Climate Service Tool Aimed at Small Hydropower Plants’ Operation and Management. Energies. 2020; 13(7):1827. https://doi.org/10.3390/en13071827
Crochemore, L., et al. Can Continental Models Convey Useful Seasonal Hydrologic Information at the Catchment Scale? (2020), Water resources research, Vol. 56(2), DOI: 10.1029/2019WR025700
Cudennec, C., Lins, H., Uhlenbrook, S., Arheimer, B. (2020) Editorial – Towards FAIR and SQUARE hydrological data, Hydrological Sciences Journal, 65:5, 681-682, DOI: 10.1080/02626667.2020.1739397
de Niet J, Finger DC, Bring A, Egilson D, Gustafsson D, Kalantari Z. (2020): Benefits of Combining Satellite-Derived Snow Cover Data and Discharge Data to Calibrate a Glaciated Catchment in Sub-Arctic Iceland. Water. 2020; 12(4):975. https://doi.org/10.3390/w12040975
Du, T.L.T., Lee, H., Duong, B. D., Arheimer, B., Li, H-L., Olsson, J., et al. (2020): Streamflow prediction in “geopolitically ungauged” basins using satellite observations and regionalization at subcontinental scale, Journal of Hydrology,Volume 588, 2020. https://doi.org/10.1016/j.jhydrol.2020.125016
Fallah, A., Rakhshandehroo, G. R., Berg, P., et al. (2020). Evaluation of precipitation datasets against local observations in southwestern Iran. International Journal of Climatology, Vol. 40, 4102-4116. https://doi.org/10.1002/joc.6445
Gidhagen, l., Olsson, J., et al. (2020) Towards climate services for European cities: Lessons learnt from the Copernicus project Urban SIS. Urban Climate, Vol 31. March 2020. https://doi.org/10.1016/j.uclim.2019.100549
Giuliani, M., Crochemore, L., Pechlivanidis, I., and Castelletti, A.: From skill to value: isolating the influence of end user behavior on seasonal forecast assessment, Hydrol. Earth Syst. Sci., 24, 5891–5902, https://doi.org/10.5194/hess-24-5891-2020, 2020.
Heal, K. V., Bartosova, A., Hipsey, M. R., Chen, X., Buytaert, W., Li, H-Y., McGrane, S., Gupta, A. B., & Cudennec, C. (2020). Water quality: the missing dimension of water in the water–energy–food nexus. Hydrological Processes. https://doi.org/10.1080/02626667.2020.1859114
Hosseini, S. H., Hashemi, H., Berndtsson, R., South, N., Aspegren, H., Larsson, R., Olsson, J., Persson, A., Olsson, L. (2020). Evaluation of a new X-band weather radar for operational use in south Sweden. Water Sci Technol (2020) 81 (8): 1623-1635. https://doi.org/10.2166/wst.2020.066
Hundecha, Y., Arheimer, B., Berg, P. et al. (2020): Effect of model calibration strategy on climate projections of hydrological indicators at a continental scale. Climatic Change 163, 1287–1306 (2020). https://doi.org/10.1007/s10584-020-02874-4
Hundecha, Y., Parajka, J., Viglione, A., (2020): Assessment of past flood changes across Europe based on flood-generating processes. Hydrological Sciences Journal Vol. 65, No. 11, 1830-1847. https://doi.org/10.1080/02626667.2020.1782413
Kiesel, J., Stanzel, P., Kling, H. et al.(2020): Streamflow-based evaluation of climate model sub-selection methods. Climatic Change 163, 1267–1285 (2020). https://doi.org/10.1007/s10584-020-02854-8
Lavers DA, Ramos M-H, Magnusson L, Pechlivanidis I, Klein B, Prudhomme C, Arnal L, Crochemore L, Van Den Hurk B, Weerts AH, Harrigan S, Cloke HL, Richardson DS, Pappenberger F. A. (2020): Vision for Hydrological Prediction. Atmosphere. 2020; 11(3):237. https://doi.org/10.3390/atmos11030237
Macian-Sorribes H., Pechlivanidis I.G., Crochemore L., Pulido-Velazquez M., 2020, ‘Fuzzy postprocessing to advance the quality of continental seasonal hydrological forecasts for river basin management’, Journal of Hydrometeorology, doi: https://doi.org/10.1175/JHM-D-19-0266.1
Massazza, G.; Tarchiani, V.; Andersson, J.C.M.; Ali, A.; Ibrahim, M.H.; Pezzoli, A.; De Filippis, T.; Rocchi, L.; Minoungou, B.; Gustafsson, D.; Rosso, M. (2020). Downscaling Regional Hydrological Forecast for Operational Use in Local Early Warning: HYPE Models in the Sirba River. Water, 12(12):3504. https://doi.org/10.3390/w12123504
Merks, J., Photiadou, C., Ludwig, F., Arheimer, B. (2020): Comparison of open access global climate services for hydrological data. Hydrological Sciences Journal 2020. https://doi.org/10.1080/02626667.2020.1820012
Musuuza, J., Gustafsson, D., Pimentel, R., Crochemore, L., Pechlivanidis, I. (2020). Impact of Satellite and In Situ Data Assimilation on Hydrological Predictions. Remote Sensing. 2020; 12(5):811. DOI: 10.3390/rs12050811
Neset, T-S., Andersson, L., Uhrqvist, O., Navarra, C., (2020): Serious Gaming for Climate Adaptation—Assessing the Potential and Challenges of a Digital Serious Game for Urban Climate Adaptation. Sustainability. 2020; 12(5):1789. https://doi.org/10.3390/su12051789
van de Beek, R. (C. Z.), Olsson, J., Andersson, J.C.M. (2020): Optimal grid resolution for precipitation maps from commercial microwave link networks, Adv. Sci. Res., 17, 79–85, https://doi.org/10.5194/asr-17-79-2020
Wörman, A., Uvo C.B., Brandimarte, L., Busse, S., Crochemore, L., et al. (2020): Virtual energy storage gain resulting from the spatio-temporal coordination of hydropower over Europe. Applied Energy, Volume 272, 2020. https://doi.org/10.1016/j.apenergy.2020.115249
Pechlivanidis, I.G., Chrochemore, L., Rosberg, J., Bosshard, T. (2020): What Are the Key Drivers Controlling the Quality of Seasonal Streamflow Forecasts? Water Resources ResearchVolume 56, Issue 6. https://doi.org/10.1029/2019WR026987
Pihlainen, S., Zandersen, M., Hyytiäinen, K., Andersen, H. E., Bartosova, A., Gustafsson, B., Jabloun, M., McCrackin, M., Meier, H. E. M., Olesen, J. E., Saraiva, S., Swaney, D., & Thodsen, H. (2020). Impacts of changing society and climate on nutrient loading to the Baltic Sea. Science of the Total Environment, 731, [138935]. https://doi.org/10.1016/j.scitotenv.2020.138935
Schleiss, M., Olsson, J., Berg P., Niemi, T., Kokkonen, T., Thorndahl, S., Nielsen, R., Nielsen, J.E., Bozhinova, D., Pulkkinen, S. (2020): The accuracy of weather radar in heavy rain: a comparative study for Denmark, the Netherlands, Finland and Sweden. Hydrol. Earth Syst. Sci., 24, 3157–3188, 2020. https://doi.org/10.5194/hess-24-3157-2020
Stadnyk, T.A., MacDonald, M.K., Tefs, A., Déry, J., Koenig, K., Gustafsson, D., Isberg, K., Arheimer, B. (2020): Hydrological modeling of freshwater discharge into Hudson Bay using HYPE. Elem Sci Anth, 8: 43. https://doi.org/10.1525/elementa.439
2019
Arheimer, B., & Lindström, G. (2019). Detecting changes in river flow caused by wildfires, storms, urbanization, regulation, and climate across Sweden. Water Resources Research, 55, 8990–9005. https://doi.org/10.1029/ 2019WR024759
Bartosova, A., Capell, R., Olesen, J.E. et al.(2019) Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea, Ambio, Vol. 48: 1325. https://doi.org/10.1007/s13280-019-01243-5
Belusic, D., Berg, P., Bozhinova, D., Bärring, L., Doescher, R., Eronn, A., Kjellström, E., Klehmet, K., Martins, H., Olsson, J., Photiadou, C., Segersson, D., Strandberg, G. (2019). Climate Extremes for Sweden. https://doi.org/10.17200/Climate_Extremes_Sweden
Berg, P., Christensen, O. B., Klehmet, K., Lenderink, G., Olsson, J., Teichmann, C., and Yang, W. (2019) Summertime precipitation extremes in a EURO-CORDEX 0.11° ensemble at an hourly resolution, Nat. Hazards Earth Syst. Sci., 19, 957–971, https://doi.org/10.5194/nhess-19-957-2019
Blöschl, G., et al. (2019) Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrological Sciences Journal, 64:10, 1141-1158, DOI: 10.1080/02626667.2019.1620507
Blöschl, G., Hall, J., Viglione, A. Perdigao, R., Parajka, J., Merz, B., Lun, D., Arheimer, B.,et al. (2019) .Changing climate both increases and decreases European river floods. Nature 573, 108–111. doi:10.1038/s41586-019-1495-6
Crochemore, L., Isberg, K., Pimentel, R., Pineda, L., Hasan, A., Arheimer, B. (2019) Lessons learnt from checking the quality of openly accessible river flow data worldwide, Hydrological Sciences Journal, DOI: 10.1080/02626667.2019.1659509
Elenius, M.T. and Abriola L.M. (2019) Regressed Models for Multirate Mass Transfer in Heterogeneous Media, Water Resources Research 55, 8646-8665. https://doi.org/10.1029/2019WR025476
Grahn, T, Olsson, J. (2019). Insured flood damage in Sweden, 1987–2013. J Flood Risk Management. 2019; 12:e12465. https://doi.org/10.1111/jfr3.12465
Gutierrez, J .M. et al.(2019). An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment. International Journal of Climatology, Vol. 39, nr 9, 3750-3785. https://doi.org/10.1002/joc.5462
Hankin, B., Strömqvist, J., Brugess, C., Pers, C., et al. (2019). A New National Water Quality Model to Evaluate the Effectiveness of Catchment Management Measures in England. Water 2019, 11(8), 1612; https://doi.org/10.3390/w11081612
Höltinger, S., Mikovits, C., Schmidt, J., Baumgartner, J., Arheimer, B., Lindström, G., Wetterlund, E. (2019). The impact of climatic extreme events on the feasibility of fully renewable power systems: A case study for Sweden, Energy, Vol 178, 695-713. https://doi.org/10.1016/j.energy.2019.04.128
Iliopoulou, T., Aguilar, C., Arheimer, B., Bermúdez, M., Bezak, N., Ficchì, A., Koutsoyiannis, D., Parajka, J., Polo, M. J., Thirel, G., and Montanari, A. (2019). A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers, Hydrol. Earth Syst. Sci., 23, 73-91, https://doi.org/10.5194/hess-23-73-2019
Kalantari, Z., Ferreira, C., Pager, J., Goldenberg, R., Olsson, J., Destouni, G. (2019) Meeting sustainable development challenges in growing cities: Coupled social-ecological systems modeling of land use and water changes, J. of Environmental Management, Vol 245, 471-480. https://doi.org/10.1016/j.jenvman.2019.05.086
Kotlarski, S, Szabó, P, Herrera, S, Räty, O., Keuler, K., Soares, P., Cardoso, R., Bosshard, T. et al. (2019) Observational uncertainty and regional climate model evaluation: A pan‐European perspective. Int J Climatol. 2019; 39: 3730– 3749. https://doi.org/10.1002/joc.5249
Lewerin, S., Sokolova, E., Wahlström, H., Lindström, G., Pers, C., Strömqvist, J., & Sörén, K. (2019). Potential infection of grazing cattle via contaminated water: A theoretical modelling approach. Animal, 13(9), 2052-2059. doi:10.1017/S1751731118003415
Neset, T-S., Wilk, J., Navarra, C., Capéll, R., Bartosova, A., (2019) Visualization-supported dialogues in the Baltic Sea Region, Ambio 48: 1314. https://doi.org/10.1007/s13280-019-01250-6
Olesen, J.E., Børgesen, C.D., Hashemi, F. Jabloun, M., Bar.Michalczyk, D., Wachniew, P., Zurek, A., Bartosova, A., Bosshard, T., et al.(2019) Ambio, 48: 1252. https://doi.org/10.1007/s13280-019-01254-2
Olsson, J., Södling, J., Berg, P. et al. (2019). Short-duration rainfall extremes in Sweden: a regional analysis. Hydrology Research 1 June 2019; 50 (3): 945–960. doi: https://doi.org/10.2166/nh.2019.073
Parajka, J., Bezak, N., Burkhart, J., Hauksson, B., Holko, L., Hundecha, Y., et al. (2019). Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe, Journal of Hydrology and Hydromechanics, 67(1), 101-109. doi: https://doi.org/10.2478/johh-2018-0011
Persson, M., Selim, T., Olsson, J. (2019) Groundwater contamination risks from conservative point source pollutants in a future climate, Hydrological Sciences Journal, 64:13, 1659-1671, DOI: 10.1080/02626667.2019.1662022
Refsgaard, J.C., Hansen, A.L., Højberg, A.L., Bartosova, A., et al. Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads?, Ambio (2019) 48: 1278. https://doi.org/10.1007/s13280-019-01195-w
Soares, A.R.A., Lapierre, J., Selvam, B.P., Lindström, G., Berggren, M. (2019). Controls on Dissolved Organic Carbon Bioreactivity in River Systems. Sci Rep 9, 14897 doi:10.1038/s41598-019-50552-y
Strömbeck, L., Pers, C., Strömqvist, J., Lindström, G., Gustavsson, J., (2019). A web based analysis and scenario tool for eutrophication of inland waters for Sweden and Europe. Environmental Modelling & Software, Volume 11, 259-267. https://doi.org/10.1016/j.envsoft.2018.07.012
Tanouchi, H.; Olsson, J.; Lindström, G.; Kawamura, A.; Amaguchi, H. (2019). Improving Urban Runoff in Multi-Basin Hydrological Simulation by the HYPE Model Using EEA Urban Atlas: A Case Study in the Sege River Basin, Sweden. Hydrology, 6, 28.
Weichselgartner, J. and Arheimer, B., (2019). Evolving climate services into knowledge-action systems. Weather, CLimate, and Society 11 (2): 385-399. https://doi.org/10.1175/WCAS-D-18-0087.1
Widmann, M., Bedia, J., Gutierrez, J. M., Bosshard, T., et al. (2019) Validation of spatial variability in downscaling results from the VALUE perfect predictor experiment. International Journal of Climatology, Vol. 39, nr 9, s. 3819-3845. https://doi.org/10.1002/joc.6024
2018
Arheimer, B., Hjerdt, N. and Lindström, G. (2018). Artificially induced floods to manage forest habitats under climate change. Front. Environ. Sci. 6:102. doi: 10.3389/fenvs.2018.00102
Berg, P.; Donnelly, C.; Gustafsson, D. (2018) Near-real-time adjusted reanalysis forcing data for hydrology. Hydrology and Earth System Sciences, Copernicus GmbH, 2018, 22, 989-1000, http://dx.doi.org/10.5194/hess-22-989-2018
Blenkinsop, S., Fowler, H. J., Barbero, R., Chan, S. C., Guerreiro, S. B., Kendon, E., Lenderink, G., Lewis, E., Li, X.-F., Westra, S., Alexander, L., Allan, R., Berg, P., Dunn, R. J. H., Ekström, M., Evans, J. P., Holland, G., Jones, R., Kjellström, E., Klein-Tank, A. et al (2018) The INTENSE project: using observations and models to understand the past, present and future of sub-daily rainfall extremes. Advances in Science and Research, 15. pp. 117-126.
Donnelly, C., Ernst, K., Arheimer, B. (2018). A comparison of hydrological climate services at different scales by users and scientists. Climate Services 11:24-35, https://doi.org/10.1016/j.cliser.2018.06.002
Foster, K., Bertacchi Uvo, C., and Olsson, J. (2018): The development and evaluation of a hydrological seasonal forecast system prototype for predicting spring flood volumes in Swedish rivers, Hydrol. Earth Syst. Sci., 22, 2953-2970, https://doi.org/10.5194/hess-22-2953-2018, 2018.
Grahn, T., and Olsson, J. (2018) Insured flood damage in Sweden, 1987-2013, J. Flood Risk Manag., e12465, doi: 10.1111/jfr3.12465.
Gutiérrez JM, Maraun D, Widmann M, et al. (2018) An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross‐validation experiment. Int. J. Climatol. 2018 1–36. https://doi.org/10.1002/joc.5462
Helmert, J., Lange, M., Dong, J., De Rosnay, P., Gustafsson, D., and 14 other co-authors (2018). 1st Snow Data Assimilation Workshop in the framework of COST HarmoSnow ESSEM 1404. Meteorologische Zeitschrift 27 (4), 325-333.
Jaramillo, F., Cory, N., Arheimer, B., Laudon, H., van der Velde, Y., Hasper, T. B., Teutschbein, C., and Uddling, J. (2018). Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space, Hydrol. Earth Syst. Sci., 22, 567-580. https://doi.org/10.5194/hess-22-567-2018
Krysanova, V., Donnelly, C., Gelfan, A., Gerten, D., Arheimer, B., Hattermann, F. and Kundzewicz; Z.W. (2018). How the performance of hydrological models relates to credibility of projections under climate change, Hydrological Sciences Journal 63(5): 696-720 DOI: 10.1080/02626667.2018.1446214
MacDonald, M. K., Stadnyk, T. A., Déry, S. J., Braun, M., Gustafsson, D., Isberg, K., and Arheimer, B. (2018). Impacts of 1.5 and 2.0 °C warming on pan-Arctic river discharge into the Hudson Bay Complex through 2070. Geophysical Research Letters, 45, 7561–7570. https://doi.org/10.1029/2018GL079147
Pechlivanidis I.G., Gupta H., and Bosshard T. (2018). An information theory approach to identifying a representative subset of hydro-climatic simulations for impact modeling studies, Water Resources Research, https://doi.org/10.1029/2017WR022035
Pugliese, A., Persiano, S., Bagli, S., Mazzoli, P., Parajka, J., Arheimer, B., Capell, R., Montanari, A., Blöschl, G., and Castellarin, A. 2018. A geostatistical data-assimilation technique for enhancing macro-scale rainfall–runoff simulations, Hydrol. Earth Syst. Sci., 22, 4633-4648, https://doi.org/10.5194/hess-22-4633-2018.
Räty, O., Räisänen, J., Bosshard, T. and Donnelly, C., 2018: Intercomparison of Univariate and Joint Bias Correction Methods in Changing Climate From a Hydrological Perspective. Climate, 6(2), p.33, 10.3390/cli6020033
Sokolova, E., Lindström, G., Pers, C., Strömqvist, J., Sternberg Lewerin, S., Wahlström, H., and K. Sören, 2018. Water quality modelling: microbial risks associated with manure on pasture and arable land. Journal of Water and Health, 16(4): 549-561, https://doi.org/10.2166/wh.2018.278.
Verma S, A Bartosova, M Markus, R Cooke, MJ Um and D Park. Quantifying the Role of Large Floods in Riverine Nutrient Loadings Using Linear Regression and Analysis of Covariance. Sustainability 2018, 10(8), 2876; https://doi.org/10.3390/su10082876
Verma S., M. Markus, A. Bartosova, and R.A. Cooke (2018). Intra-Annual Variability of Riverine Nutrient and Sediment Loadings Using Weighted Circular Statistics. Journal of Environmental Engineering, Volume 144 Issue 3 - March 2018; https://doi.org/10.1061/(ASCE)EE.1943-7870.0001327
2017
Andersson, J.C.M., Ali , A., Arheimer, B., Gustafsson, D., Minoungou, B. (2017). Providing peak river flow statistics and forecasting in the Niger River basin. Physics and Chemistry of the Earth, http://dx.doi.org/10.1016/j.pce.2017.02.010
Andersson, J.C.M., Arheimer, B., Traore. F., Gustafsson, D.,Ali., A. (2017). Process refinements improve a hydrological model concept applied to the Niger River basin. Hydrological Processes Vol. 31, nr25, s. 4540-4554. https://doi.org/10.1002/hyp.11376
Arheimer, B., Donnelly, C. and Lindström, G. (2017). Regulation of snow-fed rivers affects flow regimes more than climate change. Nature Communication 8(62). http://doi.org/10.1038/s41467-017-00092-8
Blöschl, G., Hall, J., Parajka, J., Perdigão, R.A.P., Merz, B., Arheimer, B., et al (2017). Changing climate shifts timing of European floods. Science Vol. 357, Issue 6351, pp. 588-590. http://doi.org/10.1126/science.aan2506
Crochemore, L., Ramos, M.-H., Pappenberger, F., and Perrin, C. (2017): Seasonal streamflow forecasting by conditioning climatology with precipitation indices, Hydrol. Earth Syst. Sci., 21, 1573-1591, https://doi.org/10.5194/hess-21-1573-2017.
Donnelly, C., Greuell, W., Andersson, J. et al. (2017): Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Climatic Change Vol.143: 13-26. https://doi.org/10.1007/s10584-017-1971-7.
Eisner, S., Flörke, M., Chamorro, A., Daggupati, P., Donnelly, C., Huang, J., Hundecha, Y., Koch, H.,Kalugin, A., Krylenko, I., Mishra, V., Piniewski, M., Samaniego, L., Seidou, O., Wallner, M., and Krysanova, V. (2017): An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. In Climate Change Vol 141: 401-417, https://doi.org/10.1007/s10584-016-1844-5.
Fosser, G., Khodayar, S. & Berg, P. (2017) Climate change in the next 30 years: What can a convection-permitting model tell us that we did not already know? Climate Dynamics , Vol 48, 1987-2003. https://doi.org/10.1007/s00382-016-3186-4
Gelfan, A., Gustafsson, D., Motovilov, Y., Arhemier, B., et al. (2017): Climate change impact on the water regime of two great Arctic rivers: modeling and uncertainty issues. Climatic Change Vol. 141: 499-515. https://doi.org/10.1007/s10584-016-1710-5
Gosling, S. N., Zaherpour, J., Mount, N., Hattermann, F. F., Dankers, R., Arheimer, B., et al.(2017): A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C Climatic Change (2017) Vol 141, 577-595. https://doi.org/10.1007/s10584-016-1773-3
Hattermann, F.F., Krysanova, V., Gosling, S.N., Dankers, R., Daggupati, P., Donnelly, C., et al. (2017): Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change, 141: 561-576. https://doi.org/10.1007/s10584-016-1829-4
Haerter, J. O., P. Berg, and C. Moseley (2017), Precipitation onset as the temporal reference in convective self-organization, Geophys. Res. Lett., 44, 6450–6459, http://doi.org/10.1002/2017GL073342
Huang, S., Kumar, R., Flörke, M., Yang, T., Hundecha, Y., et al. (2017): Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change Vol. 141: 381-397 https://doi.org/10.1007/s10584-016-1841-8
Højberg, A.L., Hansen, A.L., Wachniew, P., Zurek, A.J., Virtanen, S., Arustiene, J., Strömqvist, J., et. al. (2017): Review and assessment of nitrate reduction in groundwater in the Baltic Sea Basin. Journal of Hydrology: Regional Studies, Vol 12:50-68. https://doi.org/10.1016/j.ejrh.2017.04.001
Kotlarski, S. , Szabó, P. , Herrera, S. , Räty, O. , Keuler, K. , Soares, P. M., Cardoso, R. M., Bosshard, T. , Pagé, C. , Boberg, F. , Gutiérrez, J. M., Isotta, F. A., Jaczewski, A. , Kreienkamp, F. , Liniger, M. A., Lussana, C. and Pianko‐Kluczyńska, K. (2017), Observational uncertainty and regional climate model evaluation: a pan‐European perspective. Int. J. Climatol. . doi:10.1002/joc.5249
Krysanova, V., Vetter, T., Eisner, S., Huang, S., Pechlivanidis, I. G., Strauch, M., et. al. (2017). Intercomparison of regional-scale hydrological models in the present and future climate for 12 large river basins worldwide - A synthesis. Environmental Research Letters, in Press. https://doi.org/10.1088/1748-9326/aa8359
Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.(2017): Understanding hydrologic variability across Europe through catchment classification, Hydrol. Earth Syst. Sci., 21, 2863-2879, https://doi.org/10.5194/hess-21-2863-2017.
Olsson, J., Pers, C., Bengtsson, L., Pechlivanidis, I., Berg, P., Körnich, H. (2017). Distance-dependent depth-duration analysis in high-resolution hydro-meteorological ensemble forecasting: A case study in Malmo City, Sweden. Environmental Modelling & Software, Vol. 93, 381-397 s. https://doi.org/10.1016/j.envsoft.2017.03.025
Pechlivanidis, I.G., Arheimer, B., Donnelly, C. et al. (2017): Analysis of hydrological extremes at different hydro-climatic regimes under present and future conditions. Climatic Change Volume 141: 467-481. https://doi.org/10.1007/s10584-016-1723-0
Pechlivanidis, I. G., McIntyre, N., & Wheater, H. S. (2017). The significance of spatial variability of rainfall on simulated runoff: an evaluation based on the Upper Lee catchment, UK. Hydrology Research, 48(4), 1118–1130. https://doi.org/10.2166/nh.2016.038
Pimentel, R., Herrero, J. and Polo, M.J., (2017). Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography. Hydr. Earth Syst. Sci. 21: 805-820. http://doi.org/10.5194/hess-21-805-2017
Pimentel, R.; Herrero, J.; Polo, M.J. (2017) Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial Imagery. Remote Sens. 9, 995. http://doi.org/10.3390/rs9100995
Räty, O., Virta, H., Bosshard, T., & Donnelly, C. (2017). Regional climate model and model output statistics method uncertainties and the effect of temperature and precipitation on future river discharges in Scandinavia. Hydrology Research, 48 (5) 1363-1377. https://doi.org/10.2166/nh.2017.127
Samaniego, L., Kumar, R., Breuer, L. et al. (2017): Propagation of forcing and model uncertainties on to hydrological drought characteristics in a multi-model century-long experiment in large river basins. Climatic Change Vol. 141: 435-449. https://doi.org/10.1007/s10584-016-1778-y
Selim, T., Persson, M., and J. Olsson (2017) Impact of spatial rainfall resolution on point source solute transport modelling, Hydrol. Sci. J. Vol 62 Issue 16: 2587-2596. doi: 10.1080/02626667.2017.1403029
Tonderski, K., Andersson, L., Lindström, G., St Cyr, R., Schönberg, R. & Taubald, H. (2017) Assessing the use of δ18O in phosphate as a tracer for catchment phosphorus sources. Science of The Total Environment, Volumes 607–608, 31 December 2017, Pages 1-10. https://doi.org/10.1016/j.scitotenv.2017.06.167
Vetter, T., Reinhardt, J., Flörke, M. Reinhardt, J., Flörke, M., van Griensven, A., Hatterman, F., Huand, S., Koch, H., Pechlivanidis, I., et al. (2017): Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change Vol. 141: 419-433. https://doi.org/10.1007/s10584-016-1794-y
Vesakoski J-M., Nylén, T., Arheimer, B., Gustafsson, D., et. Al. (2017): Arctic Mackenzie Delta channel planform evolution during 1983‐2013 utilising Landsat data and hydrological time series. Hydrological Processes, in Press. https://doi.org/10.1002/hyp.11315
White, C. J., Carlsen, H., Robertson, A. W., Klein, R. J.T., Lazo, J. K., Kumar, A., Vitart, F., Coughlan de Perez, E., Ray, A. J., Murray, V., Bharwani, S., MacLeod, D., James, R., Fleming, L., Morse, A. P., Eggen, B., Graham, R., Kjellström, E., Becker, E., Pegion, K. V., Holbrook, N. J., McEvoy, D., Depledge, M., Perkins-Kirkpatrick, S., Brown, T. J., Street, R., Jones, L., Remenyi, T. A., Hodgson-Johnston, I., Buontempo, C., Lamb, R., Meinke, H., Arheimer, B. and Zebiak, S. E. (2017): Potential applications of subseasonal-to-seasonal (S2S) predictions. Meteorological Applications, Vol. 24, nr 3, 315-325 s. http://dx.doi.org/10.1002/met.1654
Wörman, A., Lindström, G., Riml, J. (2017): The power of runoff. Journal of Hydrology, Vol 548: 784-793. https://doi.org/10.1016/j.jhydrol.2017.03.041
2016
Aggarwal, P. K., Romatschke, U., Araguas-Araguas, L., Belachew, D., Longstaffe, F. J., Berg, P., Schumacher, C., and Funk, A. (2016). Proportions of convective and stratiform precipitation revealed in water isotope ratios. Nature Geoscience, doi:10.1038/ngeo2739
Aich V., Liersch S., Vetter T., Fournet S., Andersson J.C.M., Calmanti S., van Weert F.H.A., Hattermann F.F., Paton E.N. (2016). Flood projections within the Niger River Basin under future land use and climate change. Science of the Total Environment, 562, 666-677, http://dx.doi.org/10.1016/j.scitotenv.2016.04.021
Akselsson, C., Olsson, J., Belyazid, S., and R. Capell (2016) Can increased weathering rates due to future warming compensate for base cation losses at whole-tree harvesting?, Biogeochemistry, 128, 89-105, doi:10.1007/s10533-016-0196-6.
Arheimer, B., and B.C. Pers, (2016). Lessons learned? Effects of nutrient reductions from constructing wetlands in 1996-2006 across Sweden. Ecological Engineering, http://dx.doi.org/10.1016/j.ecoleng.2016.01.088.
Berg, P., Norin, L., and J. Olsson (2016) Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden, J. Hydrol., doi:10.1016/j.jhydrol.2015.11.031.
Crochemore, L., Ramos, M.-H., and Pappenberger, F. (2016): Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts, Hydrol. Earth Syst. Sci., 20, 3601-3618, https://doi.org/10.5194/hess-20-3601-2016
Donnelly, C, Andersson, J.C.M. and Arheimer, B., (2016). Using flow signatures and catchment similarities to evaluate a multi-basin model (E-HYPE) across Europe. Hydr. Sciences Journal 61(2):255-273, doi: 10.1080/02626667.2015.1027710
Emerton, R. Stephens E.M., Pappenberger, F., Pagano, T.C., Weerts, A.H., Wood, A.W., Salamon, P., Brown, J.D., Hjerdt, N., Donnelly, C. and Cloke, H.L. (2016). Continental and Global Scale Flood Forecasting Systems. WIREs Water. doi: 10.1002/wat2.1137
Falter, D., Dung, N.V., Vorogushyn, S., Schröter, K., Hundecha, Y., Kreibich, H., Apel, H., Theisselmann, F., and Merz, B. (2016): Continuous, large-scale simulation model for flood risk assessments: proof-ofconcept. Journal of Flood Risk Management 9: 3-21, doi: 10.1111/jfr3.12105
Hundecha, Y., Arheimer, B., Donnelly, C., and Pechlivanidis, I. (2016). A regional parameter estimation scheme for a pan-European multi-basin model. J. Hydrol: Regional Studies 6: 90-111, doi:10.1016/j.ejrh.2016.04.002
Hundecha, Y., Sunyer, M.A., Lawrence, D., Madsen, H., Willems, P., Buerger, G., Kriauciuniene, J., Loukas, A., Martinkova, M., Osuch, M., Vasiliades, L., von Christierson, B., Vormoor, K, and Yuecel, I. (2016). Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe. J. Hydrol. 541: 1273-1286, doi:10.1016/j.jhydrol.2016.08.033
Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C. and Arheimer, B., (2016). Most computational hydrology is not reproducible, so is it really science?. Water Resour. Res.. 52(10):7548–7555. doi:10.1002/2016WR019285
Moseley, C., Hohenegger, C., Berg, P and Haerter, J.O. (2016) Intensification of convective extremes driven by cloud–cloud interaction, Nature Geoscience, pp748 – 752, doi:10.1038/ngeo2789
Nijzink R., Hutton C., Pechlivanidis I.G., Capell R., Arheimer B., Freer J., Han D., Wagener W., McGuire K., Savenije H., Hrachowitz M., (2016), ‘The evolution of root-zone moisture capacities after deforestation: a step towards hydrological predictions under change?’, Hydrol. Earth Syst. Sci., 20, 4775-4799, doi:10.5194/hess-20-4775-2016
Olsson, J., Arheimer, B., Borris, M., Donnelly, C., Foster, K., Nikulin, G., Persson, M., Perttu, A-M., Uvo, C.B., Viklander, M. and Yang, W. (2016). Hydrological Climate Change Impact Assessment at Small and Large Scales: Recent Progress and Current Issues. Climate 4(3), 39; doi:10.3390/cli4030039
Olsson, J., Uvo, C.B., Foster, K., and W. Yang (2016) Technical Note: Initial assessment of a multimethod approach to spring flood forecasting in Sweden, Hydrol. Earth System Sci., 20, 1-9, doi:10.5194/hess-20-1-2016.
Pechlivanidis I.G., Jackson B., McMillan H., Gupta H., (2016), ‘Robust informational entropy-based descriptors of flow in catchment hydrology’, Hydrological Sciences Journal, 61(1), 1-18, doi: 10.1080/02626667.2014.983516
Pechlivanidis I.G., Olsson J., Bosshard T., Sharma D., Sharma K.C., (2016), ‘Multi-basin modelling of future hydrological fluxes in the Indian subcontinent’, Water Journal, 8(5), 177, 1-21, doi: 10.3390/w8050177
Pers, C., Temnerud, J. and G. Lindström, (2016). Modelling water, nutrients, and organic carbon in forested catchments: a HYPE application. Hydrological Processes, 30(18):3252-3273, doi:10.1002/hyp.10830.
Roudier, P., Andersson, J.C.M., Donnelly, C., Feyen, L., Greuell, W., Ludwig, F. (2016 ). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change, 135(2), 341-355, http://dx.doi.org/10.1007/s10584-015-1570-4
Winterdahl, M., H. Laudon, S. W. Lyon, C. Pers, and K. Bishop (2016), Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates, J. Geophys. Res. Biogeosci., 121, 126–144, doi:10.1002/2015JG002922.
Yin, Y., Jiang, S., Pers, C., Yang, X., Liu, Q., Yuan, J., Yao, M., He, Y., Luo, X., Zheng, Z., (2016). Assessment of the Spatial and Temporal Variations of Water Quality for Agricultural Lands with Crop Rotation in China by Using a HYPE Model. Int. J. Environ. Res. Public Health, 13(3), 336. doi:10.3390/ijerph13030336
2015
Andersson, J. C. M., Pechlivanidis, I. G., Gustafsson, D., Donnelly, C. and Arheimer, B. (2015). Key factors for improving large-scale hydrological model performance European Water 49:77-88.
Arheimer, B. and Lindström, G. (2015). Climate impact on floods – changes of high flows in Sweden in the past and the future. HESS 19, 771-784, 2015. doi:10.5194/hess-19-771-2015
Arheimer, B., Nilsson, J. and Lindström, G. (2015). Experimenting with Coupled Hydro-Ecological Models to Explore Measure Plans and Water Quality Goals in a Semi-Enclosed Swedish Bay. Water 7(7):3906-3924. doi:10.3390/w7073906
Aich, V.; Liersch, S.; Vetter, T.; Andersson, J.C.M.; Müller, E.N.; Hattermann, F.F. (2015). Climate or Land Use?—Attribution of Changes in River Flooding in the Sahel Zone. Water, 7, 2796-2820.
Archfield, S.A., Clark, M., Arheimer, B., Hay, L.E., McMillan, H., Kiang, J.E., Seibert, J., Hakala, K., Bock, A., Wagener, T., Farmer, W.H., Andréassian, V., Attinger, S., Viglione, A., Knight, R., Markstrom, S. and Over, T. (2015). Accelerating advances in continental domain hydrologic modelling. Water Resources Research 51(12):10078–10091. doi:10.1002/2015WR017498
Berg, P.; Bosshard, T.; Yang, W.(2015). Model Consistent Pseudo-Observations of Precipitation and Their Use for Bias Correcting Regional Climate Models. Climate, 3, 118-132.
Berg, P, Döscher, R, and Koenigk, T (2015) On the effects of constraining atmospheric circulation in a coupled atmosphere-ocean Arctic regional climate model, Climate Dynamics, DOI:10.1007/s00382-015-2783-y
Berg, P., Norin, L., and Olsson, J. (2015) Creation of a high resolution precipitation data set by merging gridded gauge data and radar observations for Sweden, Journal of Hydrology, doi:10.1016/j.jhydrol.2015.11.031
Bergström, S. & Lindström, G. (2015) Interpretation of runoff processes in hydrological modelling - experience from the HBV approach. Hydrol. Process. 29, 3535–3545 (2015) Published online 26 May 2015 in Wiley Online Library, DOI: 10.1002/hyp.10510
Ceola, S., Arheimer, B., Blöschl, G., Baratti, E., Capell, R., Castellarin, A., Freer, J., Han, D., Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth, E., Viglione, A., and Wagener, T. (2015) Virtual laboratories: new opportunities for collaborative water science, Hydrol. Earth Syst. Sci., 19, 2101-2117, doi:10.5194/hess-19-2101-2015.
Eggert B, P Berg, JO Haerter, D Jacob, C Moseley (2015) Temporal and spatial scaling impacts on extreme precipitation, Atmospheric Chemistry and Physics 15 (10), 5957-5971
Falter, D., Schröter, K., Dung, N.V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., Merz, M. (2015). Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. J. Hydrol. 524, 182 - 193.
Haerter, JO, B Eggert, C Moseley, C Piani, P Berg (2015) Statistical precipitation bias correction of gridded model data using point measurements, Geophysical Research Letters 42 (6), 1919-1929
Koenigk, T., P. Berg, R. Döscher, (2015) Arctic climate change in an ensemble of regional CORDEX simulations. Polar Research 2015, 34, 24603, http://dx.doi.org/10.3402/polar.v34.24603
Olsson, J., Berg, P., and Kawamura, A. (2015), Impact of RCM spatial resolution on the reproduction of local, sub-daily precipitation. Journal of Hydrometeorology, 16, 534-547.
Pechlivanidis I.G., Anastasiadis S., and Lekkas D.F., (2015). Development and testing of the MWBMT toolbox to predict runoff response at the poorly gauged catchment of Mornos, Greece European Water 49:3-18.
Pechlivanidis, I. G. and Arheimer, B. (2015). Large-scale hydrological modelling by using modified PUB recommendations: the India-HYPE case, Hydrol. Earth Syst. Sci., 19, 4559-4579, doi:10.5194/hess-19-4559-2015.
Pechlivanidis I.G., Olsson J., Sharma D., Bosshard T. and Sharma K.C. (2015). Assessment of the climate change impacts on the water resources of the Luni region, India. Global NEST Journal, 17(1), 29-40.
Pechlivanidis I.G., Jackson B., McMillan H., Gupta H., (2015). Robust informational entropy-based descriptors of flow in catchment hydrology, Hydrologic Sciences Journal, doi: 10.1080/02626667.2014.983516
Roudier, P., Andersson, J. C. M., Donnelly, C., Feyen, L., Greuell, W., Ludwig, F. (2015). Projections of future floods and hydrological droughts in Europe under a +2°C global warming. Climatic Change 2015, 135, 341-355 (doi: 10.1007/s10584-015-1570-4).
Thirel G., Andréassian, V., Perrin, C., Audouy, J.-N., Berthet, L., Edwards, P., Folton, N., Furusho, C., Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland D. & Vaze, J. (2015) Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments. Hydrological Sciences Journal, DOI:10.1080/02626667.2014.967248
Van Vliet, M., Donnelly, C., Strömbäck, L. and Capell, R. (2015) European scale climate information services for water use sectors. Journal of Hydrology 09/2015; 528:503-513.
Yang, W., Gardelin, M., Olsson, J., and Bosshard, T.(2015) Multi-variable bias correction: application of forest fire risk in present and future climate in Sweden, Nat. Hazards Earth Syst. Sci., 15, 2037-2057, doi:10.5194/nhess-15-2037-2015.
2014
Bergstrand M., Asp S. and Lindström G. (2014). Nationwide hydrological statistics for Sweden with high resolution using the hydrological model S-HYPE. Hydrology Research, 45.3, 349-356.
Donnelly, C. Dahne, J. and Yang, W. (2014). River Discharge to the Baltic Sea in a Future Climate. Climatic Change, 122(1-2),157-170.
Fosser, G., S. Khodayar, and P. Berg (2014), Benefit of convection permitting climate model simulations in the representation of convective precipitation, Climate Dynamics 1-16, DOI:10.1007/s00382-014-2242-1
Grimvall, A., von Brömssen, C. & Lindström, G. (2014) Using process-based models to filter out natural variability in observed concentrations of nitrogen and phosphorus in river water. Environmental Monitoring and Assessment, 186:5135-5152. doi: 10.1007/s10661-014-3765-y
Hall, J., Arheimer, B., Borga, M, Brázdil, R., Claps, P., Kiss, A., Kjeldsen, T.R., Kriaučiūnienė, J., Kundzewicz, Z., Lang, M., Llasat, M.C., Macdonald, N., McIntyre, N., Mediero, L., Merz, B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R.A. P., Plavcová, L., Rogger, M., Salinas, J.L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., and Blöschl, G. (2014). Understanding Flood Regime Changes in Europe: A state of the art assessment, Hydrol. Earth Syst. Sci. (HESS), 18, 2735–2772 (doi:10.5194/hess-18-2735-2014)
Meier, M.H.E., Andersson, H.C., Arheimer, B., Donnelly, C., Eilola, K., Gustafsson, B.G., Kotwicki, L., Neset, T., Niiranen, S., Piwowarczyk, J., Savchuk, O.P., Schenk, F., Węsławski, J.M., and Zorita, E. (2014). Ensemble Modeling of the Baltic Sea Ecosystem to Provide Scenarios for Management. AMBIO 43(1): 37-48. Doi: 10.1007/s13280-013-0475-6.
Olsson, J., and K. Foster (2014) Short-term precipitation extremes in regional climate simulations for Sweden: historical and future changes, Hydrol. Res., 45.3, 479-489, doi:10.2166/nh.2013.206.
Pechlivanidis G.I., Keramaris E., Pechlivanidis I.G., Samaras G.A., (2014). Shear stress estimation in the linear zone over impermeable and permeable beds in open channels, Desalination and Water Treatment, doi: 10.1080/19443994.2014.933622
Pechlivanidis I.G., Jackson B., McMillan H., Gupta H., (2014). Use of an entropy-based metric in multi-objective calibration to improve model performance, Water Resources Research, 50, 8066-8083, doi: 10.1002/2013WR014537
Pisinaras V., Yang W., Bärring, L., Gemitzi, A., (2014). Conceptualizing and assessing the effects of installation and operation of photovoltaic power plants on major hydrologic budget constituents. Science of The Total Environment 06/2014; 493C:239-250. DOI: 10.1016/j.scitotenv.2014.05.132
Rana, A., Foster, K., Bosshard, T., Olsson, J., and L. Bengtsson (2014) Impact of climate change on rainfall over Mumbai using Distribution-Based Scaling of Global Climate Model projections, J. Hydrol. Reg. Stud., 1, 107-128, doi: 10.1016/j.ejrh.2014.06.005.
Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., Kendon, E. J., Lenderink, G., and Roberts, N. M. (2014), Future changes to the intensity and frequency of short‐duration extreme rainfall. Reviews of Geophysics, 52(3), 522-555, DOI:10.1002/2014RG000464
Wilks, J., Hjerpe, M., Yang, W., and Fan, H. (2014). Farm-scale Adaptation to Extreme Climate and Rapid Economic Transition. Environment, Development and Sustainability. Doi: 10.1007/s10668-014-9549-2.
2013
Anastasiadis S., Boglis A., Pechlivanidis I.G., Lekkas D.F., Baltas E., 2013, ‘Application of GIS-based Clark’s Unit hydrograph and transfer function model to describe runoff response in a small catchment - Case study: Lykoremma River, Greece’, Fresenius Environmental Bulletin, 22(7B), 2152-2158.
Andersson, J.C.M., Zehnder, A.J.B., Wehrli, B., Jewitt, G.P.W., Abbaspour, K.C., Yang, H. (2013). Improving crop yield and water productivity by ecological sanitation and water harvesting in South Africa. Environmental Science & Technology, in press, http://dx.doi.org/10.1021/es304585p
Arheimer, B. and Lindström, L. 2013. Implementing the EU Water Framework Directive in Sweden. Chapter 11.20 in: Bloeschl, G., Sivapalan, M., Wagener, T., Viglione, A. and Savenije, H. (Eds). Runoff Predictions in Ungauged Basins – Synthesis across Processes, Places and Scales. Cambridge University Press, Cambridge, UK. (p. 465) pp. 353-359.
Arnbjerg-Nielsen, K., Willems, P., Olsson, J., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and V.T.V. Nguyen (2013) Impacts of climate change on rainfall extremes and urban drainage systems: a review, Water Sci. Technol., 68, 16-28, doi:10.2166/wst.2013.251.
Berg, P., Ch. Moseley, and J.O. Haerter, Strong increase in convective precipitation in response to higher temperatures, Nature Geoscience, 6(3), 181-185, doi:10.1038/NGEO1731
Berg, P., R. Döscher, and T. Koenigk (2013) Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic,Geoscientific Model Development Discussions, 6, 495-520, doi:10.5194/gmdd-6-495-2013
Berg, P., Wagner, S., Kunstmann, H., and Schädler, G.: High resolution regional climate model simulations for Germany: part I—validation, Clim. Dyn., 40:1-2, 401-414, doi:10.1007/s00382-012-1508-8, 2013
Feiccabrino J, Gustafsson D, Lundberg A, 2013. Surface-based precipitation phase determination methods in hydrological models. Hydrology Research Vol 44 No 1 pp 44–57. doi:10.2166/nh.2012.158
Holländer, H. M., Bormann, H., Blume, T., Buytaert, W., Chirico, G. B., Exbrayat, J.-F., Gustafsson, D., Hölzel, H., Krauße, T., Kraft, P., Stoll, S., Blöschl, G., and Flühler, H.: Impact of modellers' decisions on hydrological a priori predictions, Hydrol. Earth Syst. Sci. Discuss., 10, 8875-8944, doi:10.5194/hessd-10-8875-2013, 2013
Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A., Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A., Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E. and Cudennec, C., 2013. A decade of Predictions in Ungauged Basins (PUB) - a review. Hydrological Sciences Journal, 58(6):1198-1255, DOI:10.1080/02626667.2013.803183
Lucas-Picher, P., F. Boberg, J.H. Christensen, and P. Berg (2013) Dynamical downscaling with reinitializations: a method to generate finescale climate datasets suitable for impact studies,Journal of Hydrometeorology, 14,1159--1174, doi10.1175/JHM-D-12-063.1:
Montanari, A., Young , Savenije, G., H., Hughes, D. , Wagener, T., Ren, L., Koutsoyiannis, D., Cudennec, C., Grimaldi, S., G. Bloeschl, G., Sivapalan, M., Beven, K., Gupta, H., Arheimer, B., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Boegh, E., Hubert, P., Harman, C., Thompson, S., Rogger, M., Hipsey, M., Toth, E., Viglione, A., Di Baldassarre, G., Schaefli, B., McMillan, H., Schymanski, S.J., Characklis, G., Yu, B., Pang, Z., Belyaev, V., 2013. “Panta Rhei – Everything Flows”: Change in hydrology and society – The IAHS Scientific Decade 2013-2022. Hydrological Sciences Journal, 58(6):1256-1275, doi:10.1080/02626667.2013.809088.
Moseley, C., Berg, P., and Haerter J.O. (2013) Probing the precipitation life cycle by iterative rain cell tracking, JGR-atmospheres, 18, 1-10, doi:10.1002/2013JD020868
Olsson, J., Simonsson, L., and M. Ridal (2013) Rainfall nowcasting: predictability of short-term extremes in Sweden, Urban Water, Doi: 10.1080/1573062X.2013.847465.
Olsson, J., Yang, W. and Bosshard, T.: Climate model precipitation in hydrological impact studies: limitations and possibilities. Journal of Water Management and Research 69:221-230, 2013.
Ott, I., D. Duethmann, J. Liebert, P. Berg, H. Feldmann, J. Ihringer, H. Kunstmann, B. Merz, G. Schaedler, and S. Wagner (2013)High-Resolution Climate Change Impact Analysis on Medium-Sized River Catchments in Germany: An Ensemble Assessment, Journal of Hydrometeorology, 14(4), 1175-1193, doi:10.1175/JHM-D-12-091.1
Rana, A., Bengtsson, L., Jothiprakash, D., Singh., W., and J. Olsson (2013) Development of IDF-curves for tropical india by random cascade modeling, Hydrol. Earth Syst. Sci. Discuss., 10, 4709-4738, doi:10.5194/hessd-10-4709-2013.
Rasmus, S., Gustafsson, D., Koivusalo, H., Laurén, A., Grelle, A., Kauppinen, O.-K., Lagnvall, O., Lindroth, A., Rasmus, K., Svensson, M. and Weslien, P. (2013), Estimation of winter leaf area index and sky view fraction for snow modelling in boreal coniferous forests: consequences on snow mass and energy balance. Hydrol. Process., 27: 2876–2891. doi: 10.1002/hyp.9432
Wagner, S., Berg, P., Schädler, G., and Kunstmann, H.: High resolution regional climate model simulations for Germany: part II—projected climate changes, Clim. Dyn., 40:1-2, 415-427, doi:10.1007/s00382-012-1510-1, 2013.
2012
Andersson, Jafet C.M., Alexander J.B. Zehnder, Bernhard Wehrli, and Hong Yang, 2012. Improved SWAT Model Performance with Time-Dynamic Voronoi Tessellation of Climatic Input Data in Southern Africa. Journal of the American Water Resources Association (JAWRA) 48(3): 480-493. DOI: 10.1111 ⁄ j.1752-1688.2011.00627.x
Amaguchi, H., Kawamura, A., Olsson, J., and T. Takasaki (2012) Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation, J. Hydrol., 420–421, 205–215, doi:10.1016/j.jhydrol.2011.12.003.
Arheimer, B., Dahné J., and Donnelly, C. 2012. Climate change impact on riverine nutrient load and land-based remedial measures of the Baltic Sea Action Plan. Ambio 41 (6):600-612.
Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., Strömqvist, J. 2012. Water and nutrient simulations using the HYPE model for Sweden vs. the Baltic Sea basin – influence of input-data quality and scale. Hydrology research 43(4):315-329.
Berg, P., and Haerter, J.O.: Unexpected increase in precipitation intensity with temperature - A result of mixing of precipitation types?, Atm. Res., 119, 56-61, doi:10.1016/j.atmosres.2011.05.012, 2012
Donnelly, C., Rosberg, J. and Isberg, K. A validation of river routing networks for catchment modelling from small to large scales. 2012. Hydrology Research, special issue, Large-Scale Hydrology (in press) doi:10.2166/nh.2012.341.
Jebari, S., Berndtsson, R., Olsson, J., and A. Bahri (2012), Soil erosion estimation based on rainfall disaggregation, J. Hydrol., 436-437, 102-110, doi: 10.1016/j.jhydrol.2012.03.001.
Meier, M. H. E., Andersson, H. C., Arheimer, B., Blenckner, T., Chubarenko, B., Donnelly, C., Eilola, K., Gustafsson, B. G., Hansson, A., Havenhand, J., Höglund, A., Kuznetsov, I., MacKenzie, B. R., Müller-Karulis, B., Neumann, T., Niiranen, S., Piwowarczyk, J., Raudsepp, U., Reckermann, M., Ruoho-Airola, T., Savchuk, O. P., Schenk, F., Schimanke, S., Väli, G., Weslawski, J.-M., and Zorita, E. 2012. Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem — first results from multi-model ensemble simulations. Environ. Res. Lett. 7 034005 doi:10.1088/1748-9326/7/3/034005
Musselman, K.N., N.P. Molotch, S.A. Margulis, M. Lehning, and D. Gustafsson (2012), Improved snowmelt simulations with a canopy model forced with photo-derived direct beam canopy transmissivity, Water Resour. Res., 48, W10509, doi:10.1029/2012WR012285.
Olsson, J., Amaguchi, H., Alsterhag, E., Dåverhög, M., Adrian, P.-E., and A. Kawamura (2012) Adaptation to climate change impacts on urban flooding: a case study in Arvika, Sweden, Clim. Chang., 116, 231-247, doi:10.100/s10584-012-0480-y.
Olsson, J., Gidhagen, L., Gamerith, V., Gruber, G., Hoppe, H., and P. Kutschera (2012) Downscaling of short-term precipitation from Regional Climate Models for sustainable urban planning, Sustainability, 4, 866-887, doi:10.3390/su4050866.
Olsson, J., Willén, U., and A. Kawamura (2012) Downscaling extreme Regional Climate Model (RCM) precipitation for urban hydrological applications, Hydrol. Res., 43, 341-351.
Ruete A., Yang W., Bärring L., Stenseth N. C. & Snäll T., 2012: Disentangling effects of uncertainties on population projections: climate change impact on an epixylic bryophyte. Proc. R. Soc. B, rspb20120428; published online, doi:10.1098/rspb.2012.0428
Strömqvist, J., Arheimer, B., Dahné, J., Donnelly, C. and Lindström, G. 2012. Water and nutrient predictions in ungauged basins – Set-up and evaluation of a model at the national scale. Hydrological Sciences Journal 57(2):229-247.
Willems, P., Arnbjerg-Nielsen, K., Olsson, J., and V.T.V. Nguyen (2012) Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings, Atmos. Res., 103, 106-118, doi:10.1016/j.atmosres.2011.04.003.
Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., and V.-T.-V. Nguyen (2012) Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems, IWA Publishing, London, UK.
2011
Alkan Olsson, J., Jonsson, A., Andersson, L., and Arheimer, B. 2011, A model supported participatory process: a socio-legal analysis of a bottom up implementation of the EU Water Framework Directive. International J. of Agricultural Sustainability 9(2), 379-389
Arheimer, B., Lindström, G. and Olsson, J. 2011. A systematic review of sensitivities in the Swedishflood-forecasting system. Atmospheric Research 100:275–284.
Gleeson, T., Marklund, L., Smith. L. and Manning, A.H., 2011. “Classifying the water table at regional to continental scales”, Geophysical. Research. Letters., Vol. 38, L05401, 6pp.
Graham, L.P., Andersson, L., Horan, M., Kunz, R., Lumsden, T., Schulze, R.,Warburton, M., Wilk, J. and Yang, W., 2011. “Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa”, Physics and Chemistry of the Earth., Vol. 36, 727-735.
Jin, Y.-H., Kawamura, A., Park, S.-C., Amaguchi, H., Nakagawa, N., and J. Olsson (2011) Spatiotemporal classification of environmental monitoring data in the Yeongsan River basin, Korea, using self-organizing map, J. Environ. Monit., 13, 2886-2894, doi: 10.1039/c1em10132c.
Jonsson, A.C., Andersson, L., Alkan Olsson, J, Jonsson, M.,2011, Defining goals in participatory water management: merging local visions and expert judgements. Journal of Environmental Planning and Management. Vol. 54, No. 7, 909-935.
Olsson, J., Gidhagen, L., and Kawamura, A., (2011), Downscaling of Short-Term Precipitation Time Series for Climate Change Impact Assessment, in J. Hřebíček, G. Schimak, and R. Denzer (Eds.): ISESS 2011, IFIP AICT 359, pp. 625–630.
Olsson, J., Yang, W., Graham, L.P., Rosberg, J., and J. Andréasson (2011) Using an ensemble of climate projections for simulating recent and near-future hydrological change to Lake Vänern in Sweden, Tellus, 63A, 126–137.
Pappenberger, Bogner, K., F, Wetterhall, F., He, Y., Cloke, H., Thielen, J., (2011) Fixed-convergence score: A forecaster's approach to analysing hydro-meteorological forecast systems, Advances in Geosciences, 29, 27-32.
Reckermann M., Langner, J., Omstedt,A., von Storch, H., Keevallik, S., Schneider, B., Arheimer, B., Meier, H.E.M. and Hünicke, B. 2011. BALTEX—an interdisciplinary research network for the Baltic Sea region. Environ. Res. Lett. 6 (2011) 045205 (11pp)
Teutschbein, C., Wetterhall, F. Seibert, J., (2011) Evaluation of Different Downscaling Techniques for Hydrological Climate- Change Impact Studies at the Catchment Scale, Climate Dynamics, Vol. 37, No. 9-10, 2087-2105.
Wetterhall, F, Graham, P, Andréasson, J, Rosberg, J and Yang, W.,(2011), Using ensemble climate projections to assess probabilistic hydrological change in the Nordic region, Nat. Hazards Earth Syst. Sci., 11, 2295–2306.
Wetterhall, F., He, Y., Cloke, H., Pappenberger, F., (2011) Effects of temporal resolution of input precipitation on the performance of hydrological forecasting, Advances in Geosciences, 29: 21-25.
2010
Bruen, M., Krahe, P., Zappa, M., Olsson, J., Vehvilainen, B., Kok, K., and K. Daamen (2010) Visualizing flood forecasting uncertainty: some current European EPS platforms - COST731 working group 3, Atmos. Sci. Lett., 11, 92-99.
Cloke HL, Jeffers C, Wetterhall F, Byrne T, Pappenberger F, Lowe J. (2010) Climate impacts on river flow: projections for the Medway catchment UK with UKCP09 and CATCHMOD, Hydrological Processes, 24, 3476-3489.
Khalili M, Temnerud J, Fröberg M, Karltun E, Weyhenmeyer G A (2010) Nitrogen and carbon interactions between boreal soils and lakes. Global Biogeochemical Cycles, Vol 24, GB4011, 9pp..
Lindström, G., Pers, C., Rosberg, J., Strömqvist, J. and Arheimer, B. (2010) Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrology Research 41.3–4, 295-319.
Maraun, D., F. Wetterhall, A. M. Ireson, R. E. Chandler, E. J. Kendon, M. Widmann, S. Brienen, H.W. Rust, T. Sauter, M. Themessl, V. K. C. Venema, K. P. Chun, C. M. Goodess, R. G. Jones, C. Onof, M. Vrac, I. Thiele-Eich, (2010) Precipitation downscaling under climate change. Recent developments to bridge the gap between dynamical models and the end user, Reviews of Geophysics, Vol 48.
Temnerud J, Fölster J, Buffam I, Laudon H, Erlandsson M, Bishop K, 2010. Can the distribution of headwater stream chemistry be predicted from downstream observations? Hydrological Process 24(16), 2269-2276.
Wörman, A., Lindström, G., Åkesson, A. & Riml, J. (2010) Drifting runoff periodicity during the 20th century due to changing surface water volume. Hydrological Processes, 24, 3772-3784.
Yang, W., Bárdossy, A. and Caspary, H-J. (2010) Downscaling daily precipitation time series using a combined circulation- and regression-based approach. Theoretical and Applied Climatology, Vol 102, No. 3-4, 439-454.
Yang, W., Andreásson, J., Graham, LP., Olsson, J., Rosberg, J. and Wetterhall, F. (2010) Distribution-based scaling to improve usability of regional climate model projections for hydrological climate change impacts studies. Hydrology Research, 41.3–4, 211-228.
2009
Bishop, K., Beven, K., Destouni, G, Abrahamsson, K, Andersson, L, Johnson, RK, Rodhe, J and Hjerdt, N. 2009. Nature as the “Natural” goal for water management – a conversation. AMBIO 38 (4) 209-214.
Breuer, L. Huisman, J.A., Willems, P., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T., Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan & M. Viney, N.R. (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources, 32, 129–146.
Dahlke, H., Behrens, T., Seibert, J., Andersson, L, (2009). Test of statistical means for the extrapolation of soil depth point information using overlays of spatial environmental data and bootstrapping techniques. Hydrological Processes. Vol. 23, 3017-3029.
Fredrik Wetterhall & András Bárdossy & Deliang Chen & Sven Halldin & Chong-yu Xu, Statistical downscaling of daily precipitation over Sweden using GCM output, Theoretical and Applied Climatology, (2009) 96:95–103.
Graham, L.P., Olsson, J., Rosberg, J., Hellström, S.-S., Kjellström, E., and R. Berndtsson (2009) Simulating river flow to the Baltic Sea from climate simulations over the past millennium, Boreal Env. Res., 14, 173-182.
Hejzlar J., Anthony S., Arheimer B., Behrendt H., Bouraoui F., Grizzetti B., Groenendijk P., Jeuken M. H. J. L., Johnsson H., Lo Porto A., Kronvang B., Panagopoulos Y., Siderius C., Silgram M., Venohr M. and Žaloudík J. 2009. Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity. J. Environ. Monit., 11(3):584-593.
Huisman, J.A., Breuer, L., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T., Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M., Viney, N.R. & Willems, P. (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Advances in Water Resources, 32, 159–170.
Kronvang B., Behrendt H., Andersen H. E., Arheimer B., Barr A., Borgvang S. A., Bouraoui F., Granlund K., Grizzetti B., Groenendijk P., Schwaiger E., Hejzlar J., Hoffman L., Johnsson H., Panagopoulos Y., Lo Porto A., Reisser H., Schoumans O., Anthony S., Silgram M., Venohr M. and Larsen S. E. 2009. Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. J. Environ. Monit., 11(3):572-583.
Olsson, J., Berggren, K., Olofsson, M., and M. Viklander (2009) Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City, Sweden, Atmos. Res., 92, 364-375.
Schoumans O., Silgram M., Groenendijk P., Bouraoui F., Andersen H.E., Krongvang B., Behrendt H., Arheimer B., Johnsson H., Panagopoulos Y., Mimikou M., Lo Porto A., Reisser H., Le Gall G., Barr A., Anthony S.G., 2009. Description of nine nutrient loss models: capabilities and suitability based on their characteristics. J. Environ. Monit., 11(3):506-514.
Schoumans O.F., Silgram M., Walvoort D.J.J., Groenendijk P., Bouraoui F., Andersen H.E., Lo Porto A., Reisser H., Le Gall G., Anthony S., Arheimer B., Johnsson H., Panagopoulos Y., Mimikou M., Zweynert U., Behrendt H., Barr A. 2009. Evaluation of the difference of eight model applications to assess diffuse annual nutrient losses from agricultural land. J. Environ. Monit., 11(3):540-553.
Silgram M., Anthony S.G., Collins A.L., Strömqvist J., Bouraoui F., Schoumans O., Lo Porto A., Groenendijk P., Arheimer B., Mimikou M. and Johnsson H., 2009. Evaluation of diffuse pollution model applications in EUROHARP catchments with limited data. J. Environ. Monit.,11(3):554-572.
Silgram M., Schoumans O. F., Walvoort D.J.J., Anthony S.G., Groenendijk P., Strömqvist J., Bouraoui F., Arheimer B., Kapetanaki M., Lo Porto A. and Mårtensson K. 2009. Subannual models for catchment management: evaluating model performance on three European catchments. J. Environ. Monit., 11(3):526-539.
Viney, N.R., Bormann, H., Breuer, L., Bronstert, A., Croke, B.F.W., Frede, H., Gräff, T., Hubrechts, L., Huisman, J.A., Jakeman, A.J., Kite, G.W., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G., Seibert, J., Sivapalan, M. & Willems P. (2009) Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) II: Ensemble combinations and predictions. Advances in Water Resources, 32, 147–158.
2008
Andersson, L., Alkan Olsson, J, Arheimer, B, and Jonsson, A. (2008) Use of participatory scenario modelling as a platform in stakeholder dialogues. Water SA 34 (4) HELP Special Edition.
Olsson, J. & Lindström, G. (2008) Evaluation and calibration of operational hydrological ensemble forecasts in Sweden. Journal of Hydrology, 350, 14-24.
Persson, M., and J. Olsson (2008) Scaling analyses of high-resolution dye tracer experiments, Hydrol. Sci. J., 53, 1286-1299.
2007
Alkan Olsson, J., Andersson, L., 2007. Possibilities and problems with the use of hydrological models as a communication tool in water management. Special Issue WARM / Advances in Global Change Research, Water Resources Management 21, 97-110.
Arheimer, B., Andersson, L., Alkan-Olsson, J. & Jonsson, A. (2007) Using catchment models for establishment of remedy plans according to the WFD. Water Science and Technology 56, 21-28.
Graham, L.P., Andréasson, J. and Carlsson, B., 2007. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods - a case study on the Lule River Basin. Climatic Change 81, 293-307.
Johnell, A., Lindström, G., and J.Olsson, (2007) Deterministic evaluation of ensemble stream flow predictions in Sweden, Nordic Hydrology, 38, 441-450.
Jonsson, A., Andersson, L., Alkan Olsson, J. & Arheimer, B. (2007) How participatory can participatory modeling be? A discussion of the degree of influence and stakeholder and expert perspectives in six dimensions of participatory modeling. Water Science and Technology 56, 207-214.
Nishiyama, K., Endo, S., Jinno, K., Uvo, C.B., Olsson, J., and R. Berndtsson, (2007) Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map, Atmos. Res., 83, 185-200.
Olsson, J., and Persson, M., and K. Jinno, (2007) Analysis and modeling of solute transport by breakdown coefficients and random cascades, Water Resources. Research., 43, 14 pp.
Rosberg, J. and Arheimer, B. 2007. Modelling climate change impact on phosphorus load in Swedish rivers. In: Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century, IAHS Publ.314:90-97.
Wetterhall, F., Halldin, S. & Xu, C-Y., 2007, Seasonality properties of four statistical-downscaling methods in central Sweden, Theoretical and Applied Climatology, Vol 87/1-4, pp 123-137.
2006
Andersson, L., Wilk, J., Hughes, D., Kniveton, D., Layberry, R., Todd, M., and Savenije, H., 2006. Scenarios of the impact of changes of climate and water use on flow in the Okavango river. J. Hydrol. 331:43-57.
Arheimer, B. 2006. Evaluation of water quantity and quality modelling in ungauged European basins. In: Prediction in Ungauged Basins: Promises and Progress. IAHS Publ. 303:99-107.
Graham P., Andréasson J. and Persson G. 2006. Impacts of future climate change and sea level rise in the stockholm Region: Part I- The effect on water levels in Lake Mälaren. In: Schmidt-Thomé P. (ed.) Sea Level Change Affecting the Spatial Development of the baltic Sea Region. Geological Survey of Finland, Special Paper 41, Espoo. 131-141.
Hughes, D., Andersson, L., Wilk, J., Savenije, H., Regional calibration of the Pitman model for the Okavango River. J. Hydrol. 331: 45-57.
Olsson, J., (2006) Spatio-temporal precipitation error propagation in runoff modelling: a case study in central Sweden, Natural Hazards Earth System Sci., 6, 597-609.
Verthoeven, J.T.A., Arheimer, B., Yin, C., Hefting, M.M. 2006. Regional and global concerns over wetlands and water quality. Trends in Ecology and Evolution 21(2):96-103.
Wetterhall, F., A. Bárdossy, D. Chen, S. Halldin, and C. Xu (2006), Daily precipitation-downscaling techniques in three Chinese regions, Water Resour. Res., 42, W11423, 13 pp.
Wilk, J., Kniveton, D., Andersson, L., Layberry, R., Todd, M., Hughes, D., Ringrose, S., Vanderpost, C. Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. Delta. J. Hydrol. 331:18-29.