

Sammanfattning

En rejäl vårblomning observerades i Västerhavet vid samtliga växtplanktonstationer. Det var framför allt kiselalgen *Skeletonema marinoi* som dominerade och den övriga artsammansättningen var mer eller mindre densamma vid alla stationer, många arter av kiselalger i stora cellantal och ett fåtal dinoflagellater i låga cellantal. Bland andra grupper var ögonflagellaten *Eutreptiella braarudii* vanlig. De integrerade klorofyll *a*-värdena (0-20m) var över medel i Kattegatt och Skagerrak.

Vinterlugnet var forfarande påtagligt i Östersjön förutom vid ref.M1V1 i Kalmarsund, där det var kiselalgsblomning och dominans av *Skeletonema marinoi*. Klorofyllvärdena var låga där vi har resultat att redovisa.

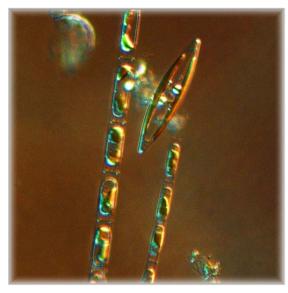
På grund av saknade tillstånd, fick ett antal stationer flyttas denna resa och ett fåtal strykas helt. Hydrografivinschen gick sönder vid BY29 i norra egentliga Östesjön, vilket innebar att bara ytprover kunde tas på återstående stationer, därför saknas också integrerat klorofyll *a.* http://www.smhi.se/polopoly_fs/1.20443!exp_0912.pdf

Abstract

An extensive spring bloom was observed at all phytoplankton stations in the Kattegat and Skagerrak areas. The diatom *Skeletonema marinoi* dominated the samples. The general species composition was more or less the same in the whole area, many diatom species in high cell numbers and a few dinoflagellates in low cell numbers. Among other groups, the flagellate *Eutreptiella braarudii* was common. The integrated chlorophyll *a* concentrations were above normal in the Kattegat and the Skagerrak.

Winter calm prevailed in the Baltic except at ref.M1V1 in the sound of Kalmar where diatoms bloomed, dominated by *Skeletonema marinoi*. The chlorophyll *a* concentrations were low.

Missing permits caused that some of the stations were moved to Swedish waters this expedition and a few had to be excluded. At BY29 in the northern Baltic Proper the hydrographic winch broke down, why only surface samples were taken at the remaining stations. Integrated chlorophyll *a* is therefore missing at some stations. http://www.smhi.se/oceanografi/oce info data/reports/cruise/exp 0912eng.pdf


More detailed information on species composition and abundance

The Skagerrak

Å17 (open Skagerrak) and Släggö (Skagerrak coast) 28th of February

A diatom spring bloom dominated the samples totally. *Skeletonema marinoi* outnumbered all other species, and *Detonula confervacea* and *Thalassiosira* cf. *minima* were found in high cell numbers. The diatom diversity was high with many species of typical spring bloomers like the *Chaetoceros* and *Thalassioria* genera. Dinoflagellate species were few and those observed were found in low cell numbers. The prymnesiophyte *Phaeocystis pouchetii* was common. This species is listed to be toxic to cod larvae. It is colony forming and produces a mucus which when it blooms may form massive foam accumulations along the shoreline. The flagellate *Eutreptiella braarudii* was common at both stations.

The integrated (0-20 meters) chlorophyll a concentrations in the Skagerrak area were above normal for the season. The chlorophyll a samples from Å13 are unfortunately missing.

The diatom *Skeletonema marinoi* (chain) dominated the samples and the diatom *Navicula transitans* was very common in the Skagerrak and the Kattegat samples.

The euglenophyte *Eutreptiella braarudii* was common in the samples.

The Kattegat

N14 Falkenberg and Anholt E 29th of February and Anholt E 6th of March


The Kattegat samples were very much the same as the Skagerrak samples, look above.

The integrated (0-20 meters) chlorophyll *a* concentrations from the Kattegat area were above normal for the season at all stations.

The Baltic Sea

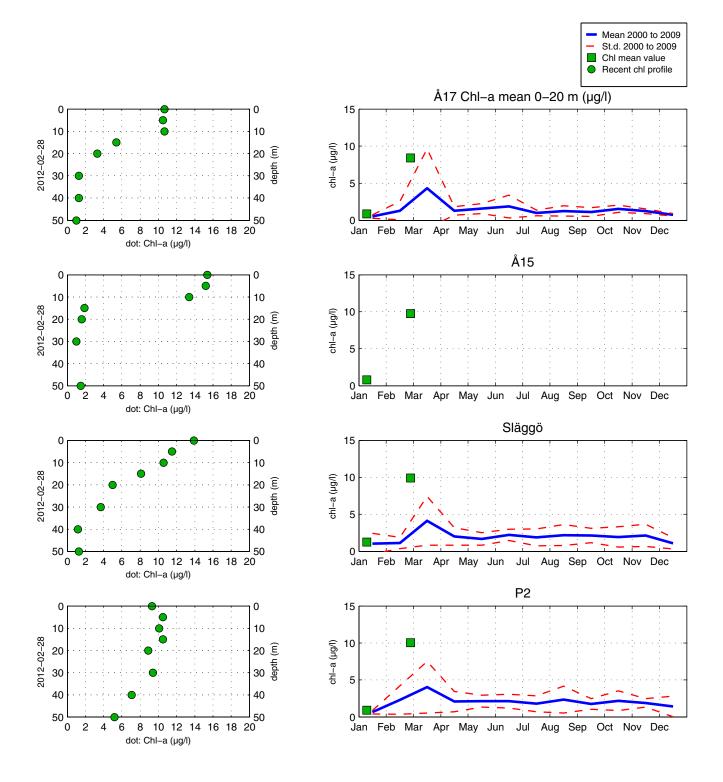
Ref M1V1 Kalmar Sound 1st of March

Spring bloom had probably just started in the sound of Kalmar at the time of the expedition. The chlorophyll *a* concentrations were not very high, but the diatom *Skeletonema marinoi* was blooming and *Detonula confervacea* was quite abundant.

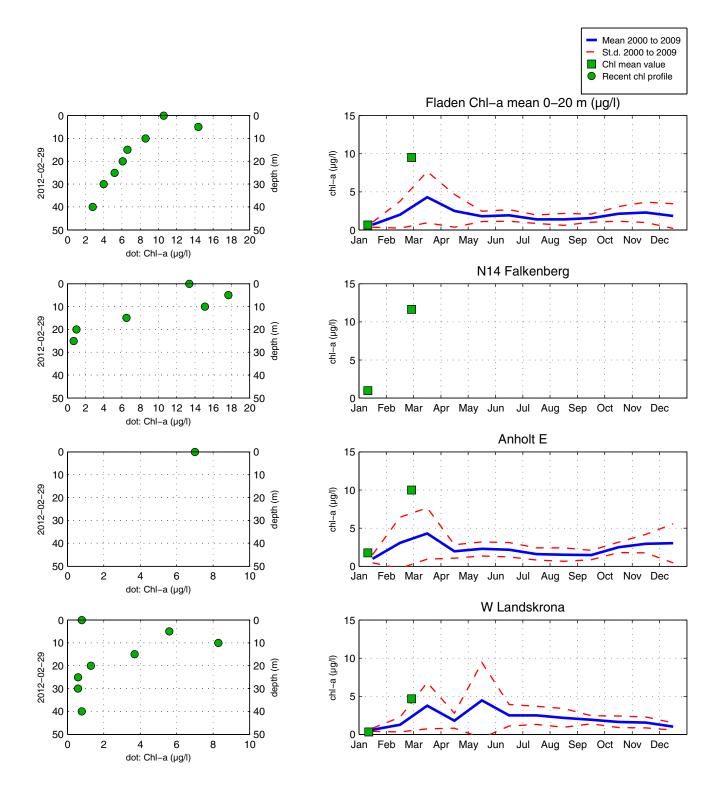
The diatom *Detonula confervacea* was common in the sound of Kalmar as well as in the Kattegat and Skagerrak areas.

"BY2", BY9, BY15 and BY31

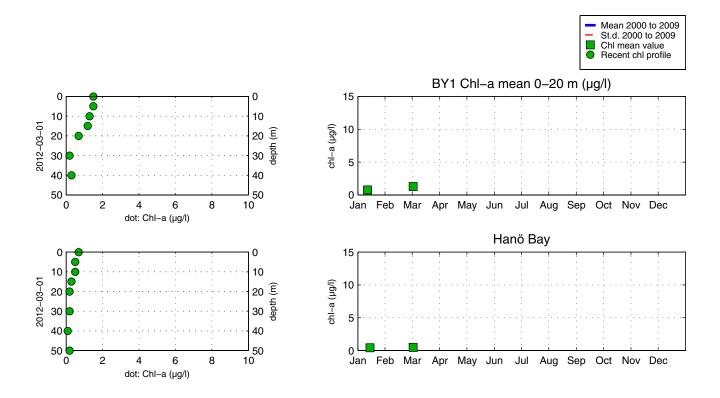
The phytoplankton diversity was low, merely a few diatom species in very low cell numbers were found, as were they a promise that spring bloom will come soon. Cyanobacteria colonies were present at all stations, the filamentous cyanobacterium *Aphanizomenon* sp. was found common at stations BY9 and BY31.

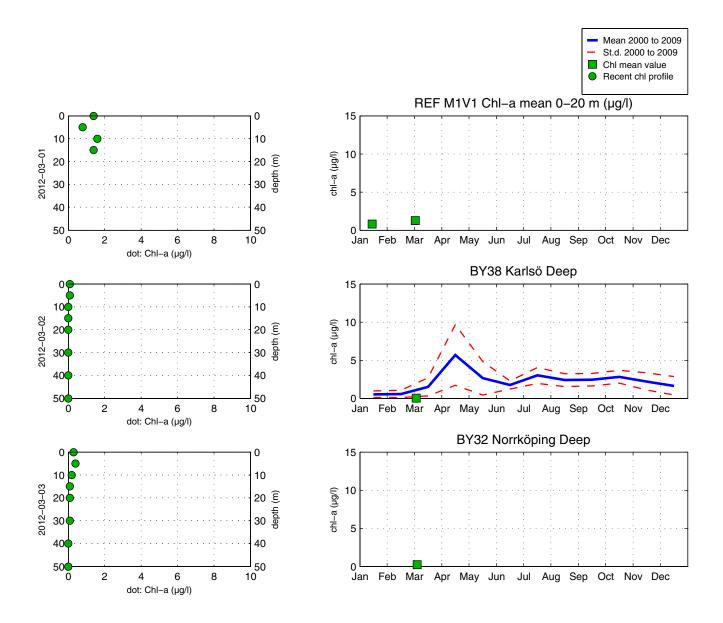

The integrated (0-20 meters) chlorophyll *a* concentrations from the Baltic Sea were low but normal for the season where sampling was possible and not excluded due to winch problems or lack of permits.

Phytoplankton analysis and text by: Ann-Turi Skjevik


Selection of observed species	Å17	Släggö	N14	Anholt E	Anholt E
Red=potentially toxic species	28/2	28/2	29/2	29/2	6/3
	cells/l	cells/l	cells/l	cells/l	cells/l
Attheya septentrionalis			present		present
Chaetoceros affinis			present		present
Chaetoceros ceratosporus					present
Chaetoceros constrictus	present				
Chaetoceros debilis	present	present	present	present	present
Chaetoceros laciniosus	present	present	present	present	process
Chaetoceros similis	present	p. coo	present	present	
Chaetoceros socialis	common	present	common	common	common
Chaetoceros subtilis		procent	present	00	00
Chaetoceros tenuissimus	present		present	present	
Coscinodiscus spp.	prosont	present	prosent	prosent	
Detonula confervacea	very common				
Guinardia delicatula	present	very common	very common	very common	very common
Navicula transitans		vory common	vory common	vory common	vorv common
	very common				
Nitzschia longissima	present	present		procent	
Odontella aurita	Droco	proce-t	00000	present	proof-1
Porosira glacialis	present	present	common	present	present
Rhizosolenia setigera	10 ''''	present	40 ''''	45 ''''	present
Skeletonema marinoi	>12 million	>15 million	>12 million	>15 million	>12 million
Thalassionema nitzschioides	present	present	present	present	present
Thalassiosira cf. angulata	common	present	common	present	common
Thalassiosira anguste-lineata	present	present	common	present	present
Thalassioria constricta	present		present	present	present
Thalassiosira nordenskioeldii	present	present			present
Thalassiosira cf. minima	very common		very common	very common	very common
Thalassiosira nordenskioeldii	present	present	present	present	present
Thalassiosira punctigera		present			
Thalassiosira spp.		present			
Amphidinium sphenoides	present				
Ceratium lineatum		present			
Ceratium longipes	present				
Ceratium tripos	present	present	present	present	present
Dinophysis norvegica		present			
Gymnodiniales	present	present	present		
Gyrodinium sp.	present				
Gyrodinium cf. spirale	present	present		present	present
Heterocapsa rotundata			present	present	present
Katodinium glaucum	present				
Protoperidinium bipes		present			
Protoperdinium brevipes	present				
Pyrophacus horologium					present
Dichtyocha speculum	present	present		present	present
Pseudochattonella sp.				present	
Pseudpedinellacf. pyriforme	present			present	
Cryptomonadales spp.	common	present	common	present	present
Phaeocystis pouchetii	common	present	common	common	present
Eutreptiella braarudii	common	common	common	common	common
Eutreptiella gymnastica			present	present	
Pyramimonas spp.	present	present			
Ebria tripartita		•	present		
Leucocryptos marina	present	present	present	present	
Cryothecomonas scybalophora	present			present	
Ciliophora	present		present	present	present
Mesodinium rubrum	p. 000/10	present	present	present	present
Strombidium spp.	nresent	PIOOOIII			present
οποποιαίαπ ορφ.	present		present	present	hieseiii

Selection of observed species	"BY2"	BY9	BY15	BY31	Ref. M1-V1
Red=potentially toxic species	5/3	4/3	4/3	3/3	1/3
	cells/l	cells/l	cells/l	cells/l	cells/l
Achnanthes taeniata		present		present	
Centrales spp.			present		
Chaetoceros ceratosporus		present			present
Chaetoceros impressus				present	
Chaetoceros tenuissimus	present				
Chaetoceros spp.	<u> </u>		present	present	
Detonula confervacea					common
Navicula transitans					present
Nitzschia longissima				present	
Porosira glacialis					present
Skeletonema marinoi		present	present	present	> 700 000
Thalassiosira cf. angulata					present
Thalassiosira spp.					present
Dinophysis norvegica		present			
Gymnodiniales	present	present	present	present	
Heterocapsa spp.	present			present	present
Katodinium glaucum		present			
Peridiniales				present	
Peridiniella catenata					present
Protoperidinium spp.					present
Cryptomonadales spp.	common	common	common	common	common
Cf. Prymnesium polylepis		present		present	present
Prymnesiales spp.				present	present
Aphanothece spp.	present	present	present		common
<i>Aphanizomenon</i> spp.		common		common	
Woronichinia spp.	present	present			
Planctonema lauterbornii		present	present		
Pseudopedinella cf. pyriforme	present				
Pseudopedinella spp.					present
Pyramimonas spp.	present			present	present
Eutreptiella cf. gymnastica	present			present	present
Choanoflagellidea				present	present
Calliacantha longicaudata		present			
Calliacantha natans	present				present
Cryothecomonas scybalophora				present	
Ebria tripartita			present		
Katablepharis remigera					present
Leucocryptos marina		present	present	present	present
Ciliophora	common	present	present	present	present
Mesodinium rubrum	present	present	present	present	present
Strombidium spp.					present


The Skagerrak


The Kattegat and the Sound

The Southern Baltic

The Western Baltic

Om klorofylldiagrammen

Klorofyll *a* är ett mått på mängden växtplankton. Prover tas från ett antal djup. Data presenteras både från de fasta djupen och som medelvärden 0-20 m. Utöver resultaten från laboratorieanalyserna av vattenprover mäts klorofyll *a* som fluorescens från ett automatiskt instrument som sänks ned från fartyget. På så sätt kan djupt liggande, ibland, tunna lager av växtplankton observeras. Tekniska problem med fluorescensmätaren har orsakat den senare tidens brist på data, dessa data läggs till i diagrammen igen så fort det är åtgärdat.

About the chlorophyll graphs

Chlorophyll *a* is sampled from several depths. Data is presented both from the discrete depths and as an average 0-20 m. In addition to the laboratory analysis from the water samples chlorophyll fluorescence is measured in continuous depth profiles from the ship. This is a way to observe thin layes of phytoplankton occurring below the surface. Due to technical problems with the fluorescence measuring device, data have not been available lately. These data will be added to the diagrams as soon as the problems are solved.

Om AlgAware

SMHI genomför ca en gång per månad expeditioner med U/F Argos i Östersjön och Västerhavet. Resultat baserade på semikvantitativ mikroskopanalys av planktonprover samt klorofyllmätningar presenteras kortfattat i denna rapport. Information från SMHI:s satellitövervakning av algblomningar finns på www.smhi.se.

About AlgAware

SMHI carries out monthly cruises with R/V Argos in the Baltic and the Kattegat/Skagerrak. Results from semi quantitative microscopic analysis of phytoplankton samples as well as chlorophyll measurements are presented in brief in this report. Information from SMHI:s satellite monitoring of algal blooms is found on www.smhi.se.

Art / Species	Gift / Toxin	Eventuella symptom	Clinical symptoms
Alexandrium spp.	Paralytic	Milda symptom:	Mild case:
	shellfish	Inom 30 min.:	Within 30 min:
	poisoning	Stickningar eller en känsla av	tingling sensation or numbness around lips,
	(PSP)	bedövning runt läpparna, som	gradually spreading to face and neck; prickly
		sprids gradvis till ansiktet och nacken;	sensation in fingertips and toes; headake,
		stickningar i fingertoppar och tår;	dizziness, nausea, vomiting, diarrhoea.
		Huvudvärk; yrsel, illamående,	Extreme case
		kräkningar, diarré	Muscular paralysis; pronounced respiratory
		Extrema symptom:	difficulty; choking sensation; death trough
		Muskelförlamning;	respiratory paralysis may occur within 2-24
		andningssvårigheter; känsla av att	hours after ingestion.
		kvävas;	
		Man kan vara död inom 2-24	
		timmar efter att ha fått i sig giftet, på	
		grund av att andningsmuskulaturen	
		förlamas.	
Dinophysis spp.	Diarrehetic	Milda symptom:	Mild case:
7,	shellfish	Efter cirka 30 minuter till några	Within 30 min-a few hours:
	poisoning	timmar:	dizziness, nausea, vomiting, diarrhoea,
	(DSP)	yrsel, illamående, kräkningar, diarré,	abdominal pain.
		magont	Extreme case:
		Extrema symptom:	Repeated exposure may cause cancer.
		Upprepad exponering kan orsaka	
		cancer	
Pseudo- niztschia	Amnesic	Milda symptom:	Mild case:
spp.	shellfish	Efter 3-5 timmar:	Within 3-5 hours: dizziness, nausea,
	poisoning	yrsel, illamående, kräkningar, diarré,	vomiting, diarrhoea, abdominal cramps.
	(ASP)	magkramper	Extreme case:
		Extrema symptom:	dizziness, hallucinations, confusion, loss of
		Yrsel, hallucinationationer, förvirring,	memory, cramps.
Chaetoceros	Mechanical	förlust av korttidsminnet, kramper Låg celltäthet:	Low cell numbers:
concavicornis/	damage	Ingen påverkan.	No effect on fish.
C.convolutus	through hooks	Hög celltäthet:	High cell numbers:
C.convolutus	on setae	Fiskens gälar skadas, fisken dör.	Fish death due to gill damage.
D 1 1 "			
Pseudochattonella	Fish toxin	Låg celltäthet:	Low cell numbers:
spp.		Ingen påverkan.	No effect on fish.
		Hög celltäthet:	High cell numbers:
		Fiskens gälar skadas, fisken dör.	Fish death due to gill damage.

Översikt över några potentiellt skadliga alger och det aktuella giftets effekt. Overview of potentially harmful algae and effects of toxins. Manual on harmful marine microalgae (2003 - UNESCO Publishing).

Kartan på framsidan visar viktat medelvärde för klorofyll a, $\mu g/l$ (0-20 m) vid de olika stationerna. Förekomst av skadliga alger vid stationer där arter analyseras markeras med symbol. Då cirkeln är tom innebär detta att stationen inte provtagits.

The map on the front page shows weighted mean of chlorophyll a, $\mu g/l$ (0-20 m) at sampling stations. Presence of harmful algae at stations where species analysis is performed is shown with a symbol An empty cirkel indicates that there has been no sampling at that station.

