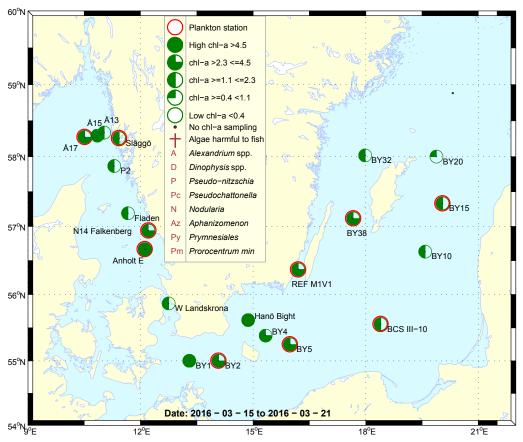
Oceanographic Unit No 3, March 2016



# ALGAL SITUATION IN MARINE WATERS SURROUNDING SWEDEN


#### Sammanfattning

Vårblomningen gick mot sitt slut i Kattegatt och Skagerrak. Klorofyllhalterna var generellt höga och de typiska kiselalgerna var närvarande, men närsalterna var helt eller nästan helt slut, varför det förutspås att detta var slutfas av blomningen. Klorofyllfluorescensmaxima dominerades av kiselalger och de integrerade (0-20 m) klorofyllvärdena var normala för denna månad.

I södra Östersjön pågick vårblomning med dominans av kiselalgen *Skeletonema marinoi*. Det var förhöjd aktivitet bland växtplankton i ytan vid övriga Östersjöstationer också, vilket förmodligen var precis en början på vårblomning.

De integrerade klorofyllvärdena (0-20 m) låg över det normala för denna månad vid BY4, REF M1V1 och BY38, i övrigt var det normala värden.

För mer detaljerad information om närsalter mm, se den senaste expeditionsrapporten: <a href="http://www.smhi.se/publikationer/2.887/expeditionsrapport-fran-r-v-aranda-vecka-11-12-2016-1.102596">http://www.smhi.se/publikationer/2.887/expeditionsrapport-fran-r-v-aranda-vecka-11-12-2016-1.102596</a>



#### **Abstract**

The spring bloom was in its final phase in the Kattegat-Skagerrak areas. The chlorophyll concentrations were high and typical spring bloom diatoms were present, but the nutrients were completely or almost completely exhausted, which is why the bloom was predicted to end soon. Chlorophyll fluorescence maxima were dominated by diatoms and the integrated (0-20 m) chlorophyll concentrations were normal for this month.

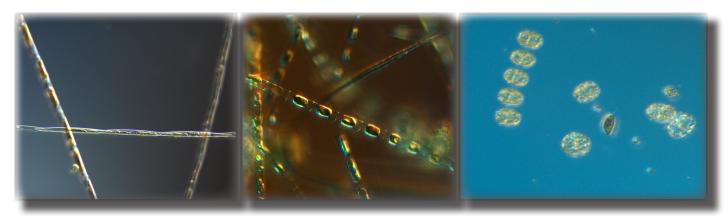
The spring bloom was ongoing in the southern Baltic with dominance by the diatom *Skeletonema marinoi*. There was enhanced activity amongst phytoplankton in the surface waters at the other Baltic stations as well, which probably meant that the spring bloom was just starting.

The integrated (0-20 m) chlorophyll *a* concentrations were above what is normal for this month at stations BY4, REF M1V1 and BY38 and normal at the rest of the Baltic stations.

For more information about nutrients etc, see the latest cruise report: <a href="http://www.smhi.se/en/publications/cruise-reports-from-re-v-aranda-week-11-12-2016-1.102598">http://www.smhi.se/en/publications/cruise-reports-from-re-v-aranda-week-11-12-2016-1.102598</a>

More detailed information on species composition and abundance

# The Skagerrak


# Å17 (open Skagerrak) 19th of March

The phytoplankton diversity was low, although dominated by diatoms. A chlorophyll fluorescence maximum at 15 m revealed the sinking spring bloom and was mainly caused by the diatoms *Skeletonema marinoi*, *Thalassiosira nordenskioeldii* and *Pseudo-nitzschia* spp.\*

# Släggö (Skagerrak coast) 19th of March

The species diversity was higher than at Å17, but the cell numbers were quite low. The diatom *Pseudo-nitzschia* spp.\* was the most common genus.

Nutrients were very low or completely gone in the surface water in the Skagerrak area, the integrated (0-20 m) chlorophyll *a* concentrations were normal for this month.



The diatoms *Pseudo-nitzschia* spp (left), *Skeletonema marinoi* (middle) and *Thalassiosira nordenskioeldii* (right), were numerous at the phytoplankton stations in the Kattegat and Skagerrak areas.

# The Kattegat

# Anholt E 18th and 19th of March

The phytoplankton community was dominated by diatoms, of which *Pseudo-nitzschia* spp.\* was the most common genus. Chlorophyll fluorescence maxima at 12 and 15 meters were mainly caused by the diatoms *Thalassiosira nordenskioeldii, Skeletonema marinoi* and *Pseudo-nitzschia* spp.\*

# N14 Falkenberg 19th of March

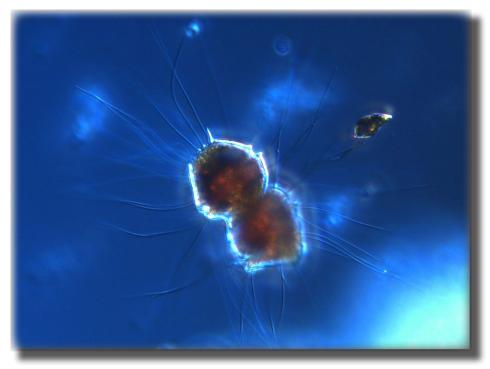
The amount of phytoplankton was lower than at Anholt E, and consequently the chlorophyll *a* concentrations were also lower.

Inorganic nitrogen was completely exhausted down to 10 meters depth in the Kattegat area, the integrated (0-20 m) chlorophyll *a* concentrations were normal for this month.

#### The Baltic Sea

# BY2 Arkona Basin and BY5 Bornholm Basin 17th of March

Spring bloom was ongoing in the Southern Baltic and inorganic nitrogen was almost completely exhausted down to ten meters depth. Several diatom species were present, and dominated by *Skeletonema marinoi*. Dinoflagellates were also common. A chlorophyll fluorescence maximum between 8 and 9 meters was caused mainly by *S. marinoi*.

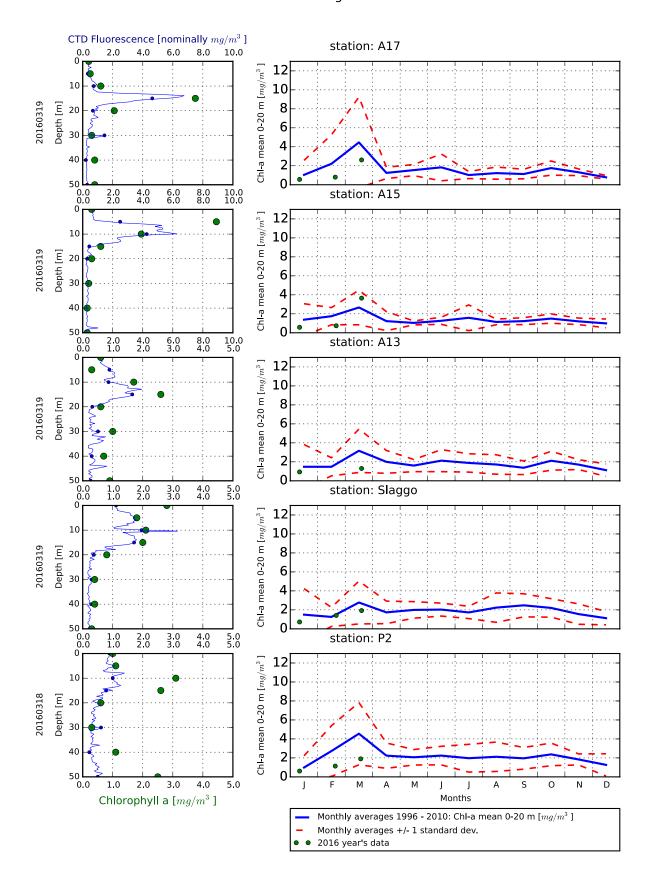

### BY15 16th of March and BCS III-10 17th of March

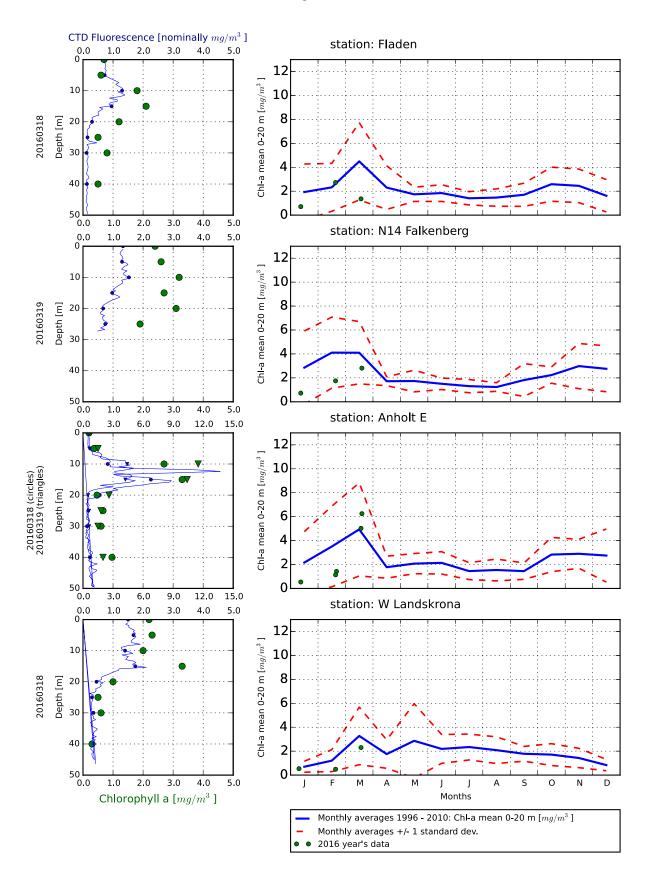
A few diatom species were present, but spring bloom had not yet started. Nutrients were available and chlorophyll concentrations were moderate. A few filaments of the cyanobacterium *Aphanizomenon flos-aquae* were observed at BY15 and colony forming pico-cyanobacteria were abundant.

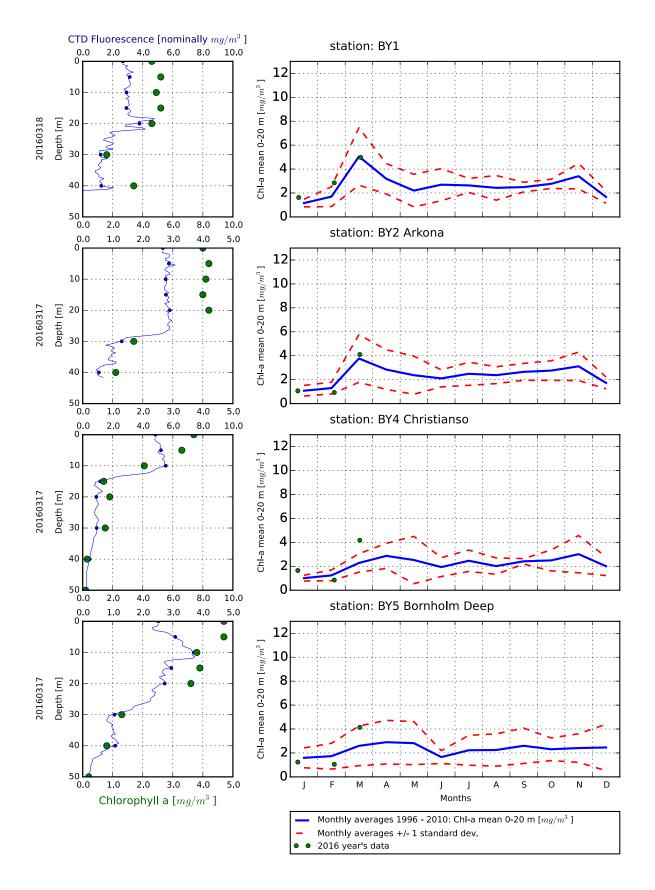
# REF M1V1 Kalmar Sound 20th of March

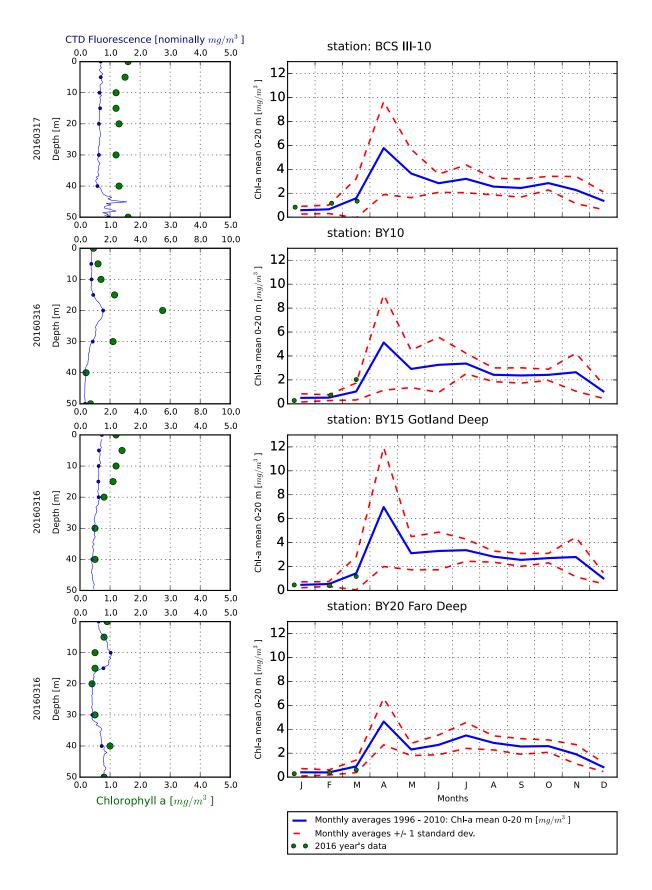
Spring bloom was ongoing and dominated by the diatom *Skeletonema marinoi*. A few more diatom species were present in low cell numbers. Dinoflagellates were common and represented by e.g. *Peridiniella catenata*. A few filaments of the cyanobacterium *Aphanizomenon flos-aquae* were observed and colony forming pico-cyanobacteria were abundant. Inorganic nitrogen was almost completely exhausted from the surface to the bottom.

The integrated (0-20 m) chlorophyll *a* concentrations were above what is normal for this month at stations BY4, REF M1V1 and BY38 and normal at the rest of the Baltic stations.

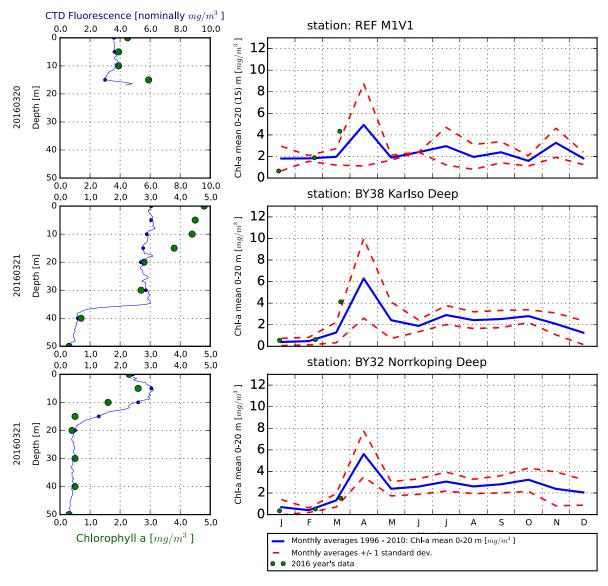




*Peridiniella catenata* is one of the dinoflagellates that were found at most of the Baltic phytoplankton stations.


Phytoplankton analysis and text by: Ann-Turi Skjevik


| Selection of observed species      | Å17      | Släggö   | N14      | Anholt E    | Anholt E    |
|------------------------------------|----------|----------|----------|-------------|-------------|
| Red=potentially toxic species      | 19/3     | 19/3     | 19/3     | 18/3        | 19/3        |
| Hose 0-10 m                        | presence | presence | presence | presence    | presence    |
| Attheya septentrionalis            |          | present  |          |             |             |
| Chaetoceros affinis                |          | present  |          | present     |             |
| Chaetoceros danicus                |          | present  | present  | present     | present     |
| Chaetoceros debilis                | present  |          |          |             | present     |
| Chaetoceros decipiens              | present  | present  | present  |             | present     |
| Chaetoceros socialis               | present  |          | present  |             |             |
| Coscinodiscus spp                  |          | present  |          | present     |             |
| Coscinodiscus concinnus            |          |          | present  |             | present     |
| Cylindrotheca closterium           | present  |          |          |             |             |
| Detonula confervacea               |          |          | present  |             |             |
| Guinardia delicatula               | present  |          | present  | present     | present     |
| Leptocylindrus minimus             |          |          |          |             | present     |
| Navicula transitans var. derasa    | present  |          |          |             |             |
| Proboscia alata                    |          | present  | present  |             |             |
| Pseudo-nitzschia                   | present  | common   | common   | very common | very common |
| Rhizosolenia hebetata f. semispina |          |          |          |             | present     |
| Skeletonema marinoi                | common   | present  | present  | present     | present     |
| Thalassionema nitzschioides        |          | present  |          |             |             |
| Thalassiosira anguste-lineata      | present  | present  |          | present     |             |
| Thalassiosira nordenskioeldii      | common   | present  | present  | common      | common      |
| Ceratium fusus                     | present  |          |          |             |             |
| Dinophysis acuminata               |          |          | present  | present     | present     |
| Gymnodiniales                      | present  | present  | present  | present     | common      |
| Gymnodinium spp                    |          |          |          | present     |             |
| Gyrodinium spirale                 | present  |          | present  |             | present     |
| Heterocapsa spp                    |          | present  | present  |             | present     |
| Heterocapsa rotundata              |          | present  | present  |             | present     |
| Karlodinium veneficum              |          | present  |          | present     |             |
| Peridiniales                       |          | present  | present  |             |             |
| Peridiniella danica                |          | present  | present  |             |             |
| Protoperidinium spp                |          | present  |          |             | present     |
| Protoperidinium bipes              |          | present  |          | present     |             |
| Protoperidinium pellucidum         |          | present  | present  |             | present     |
| Dinobryon balticum                 |          | present  | present  |             | present     |
| Dictyocha speculum                 | present  |          |          |             |             |
| Pseudopedinella spp                |          | present  | present  |             |             |
| Pseudopedinella pyriformis         |          | present  | present  |             | present     |
| Cryptomonadales                    | present  | common   | common   | present     | present     |
| Woronichinia spp                   |          |          |          | present     |             |
| Eutreptiella spp                   |          | present  |          |             |             |
| Emiliania huxleyi                  | present  |          |          |             |             |
| Heterosigma spp                    |          |          |          | present     |             |
| Cymbomonas tetramitiformis         |          | present  |          |             |             |
| Calliacantha longicaudata          |          | present  |          |             |             |
| Craspedophyceae                    |          | present  |          |             |             |
| Leucocryptos marina                |          | present  |          | present     |             |
| Telonema subtile                   |          |          |          | present     | present     |
| Ciliophora                         | common   | present  | present  | present     | present     |
| Laboea strobila                    |          |          |          | present     | present     |
| Mesodinium rubrum                  |          |          |          |             | present     |
| Stenosemella                       |          | present  | present  |             |             |
| Strombidium                        | present  |          |          |             | present     |
| Tintinnopsis                       |          | present  | present  |             | present     |

| Selection of observed species      | BY2         | BY5         | BCS III-10 | BY15     | REF M1V1    |
|------------------------------------|-------------|-------------|------------|----------|-------------|
| Red=potentially toxic species      | 17/3        | 17/3        | 17/3       | 16/3     | 20/3        |
| Hose 0-10 m                        | presence    | presence    | presence   | presence | presence    |
| Attheya septentrionalis            | present     | present     | •          |          | present     |
| Chaetoceros danicus                | present     | present     |            | present  | present     |
| Chaetoceros impressus              | present     | present     |            | present  | present     |
| Chaetoceros similis                | present     | present     |            |          | present     |
| Chaetoceros socialis               | ·           |             |            |          | present     |
| Chaetoceros subtilis var. subtilis | common      | present     |            | present  | present     |
| Cyclotella choctawhatcheeana       |             | present     |            |          | ·           |
| Skeletonema marinoi                | very common | very common | present    | present  | very common |
| Thalassiosira spp                  | present     | present     | present    |          | present     |
| Amphidinium sphenoides             |             | present     | present    |          | ·           |
| Amylax triacantha                  |             | present     | ·          |          |             |
| Gymnodiniales                      | present     | common      |            | common   | common      |
| Gymnodinium spp                    | ·           |             | common     |          |             |
| Gyrodinium flagellare              |             | present     |            | present  |             |
| Gyrodinium spirale                 |             |             |            | ·        | present     |
| Heterocapsa spp                    | present     | present     |            |          | present     |
| Heterocapsa rotundata              | present     | present     |            |          | present     |
| Heterocapsa triquetra              |             | present     |            |          |             |
| Karlodinium micrum                 |             |             |            | present  |             |
| Peridiniales                       |             | very common |            |          | very common |
| Peridiniella catenata              | present     | present     | present    | present  | present     |
| Protoperidinium spp                |             |             |            |          | present     |
| Protoperidinium pellucidum         |             |             | present    |          |             |
| Cryptomonadales                    | common      | present     | common     | present  | common      |
| Prymnesiales                       |             |             |            |          | present     |
| Aphanizomenon flos-aquae           |             |             |            | present  | present     |
| Aphanocapsa spp                    |             | present     |            | present  | present     |
| Aphanothece spp                    |             | present     |            | present  |             |
| Aphanothece paralleliformis        |             | present     |            |          |             |
| Lemmermanniella spp                | present     | present     | present    |          |             |
| Pseudanabaena                      |             | present     |            |          |             |
| Snowella spp                       | present     | present     | present    | common   | present     |
| Woronichinia spp                   |             |             |            |          | present     |
| Pterosperma spp                    | present     |             | present    | present  |             |
| Eutreptiella spp                   |             | present     |            | present  | present     |
| Oocystis spp                       | present     |             |            |          |             |
| Pediastrum cf. boryanum            |             |             |            | present  |             |
| Planctonema lauterbornii           |             |             | present    |          |             |
| Calliacantha natans                |             |             |            |          | present     |
| Craspedophyceae                    |             |             |            |          | present     |
| Ebria tripartita                   | present     | present     |            | present  | present     |
| Ciliophora                         | common      | common      | common     | present  | common      |
| Mesodinium rubrum                  | present     | present     | present    | present  | present     |
| Strombidium spp                    | present     |             | present    |          |             |
| Tintinnopsis spp                   |             |             |            |          | present     |










#### The Western Baltic



# Om klorofylldiagrammen

Klorofyll a är ett mått på mängden växtplankton. Prover tas från ett antal djup. Data presenteras både från de fasta djupen och som medelvärden 0-20 m. Utöver resultaten från laboratorieanalyserna av vattenprover mäts klorofyll a som fluorescens från ett automatiskt instrument som sänks ned från fartyget. På så sätt kan djupt liggande, ibland tunna lager av växtplankton observeras.

# About the chlorophyll graphs

Chlorophyll a is sampled from several depths. Data are presented both from the discrete depths and as an average 0-20 m. In addition to the laboratory analysis from the water samples chlorophyll fluorescence is measured in continuous depth profiles from the ship. This is a way to observe thin layers of phytoplankton occurring below the surface.

# Om AlgAware

SMHI genomför månatliga expeditioner i Östersjön och Västerhavet. Resultat baserade på semikvantitativ mikroskopanalys av planktonprover samt klorofyllmätningar presenteras kortfattat i denna rapport. Information från SMHIs satellitövervakning av algblomningar finns under perioden juni-augusti på www.smhi.se.

# About AlgAware

SMHI carries out monthly cruises in the Baltic and the Kattegat/Skagerrak. Results from semi quantitative microscopic analysis of phytoplankton samples as well as chlorophyll measurements are presented in brief in this report. Information from SMHIs satellite monitoring of algal blooms is found on www.smhi.se during the period June-August.

| Art / Species Alexandrium spp. | Gift / Toxin        | Eventuella symptom  Milda symptom:                 | Clinical symptoms                             |
|--------------------------------|---------------------|----------------------------------------------------|-----------------------------------------------|
| Alexandrium spp.               | Paralýtic           |                                                    | Mild case:                                    |
|                                | shellfish           | Inom 30 min.:                                      | Within 30 min:                                |
|                                | poisoning           | Stickningar eller en känsla av                     | tingling sensation or numbness around         |
|                                | (PSP)               | bedövning runt läpparna, som                       | lips, gradually spreading to face and neck;   |
|                                |                     | sprids gradvis till ansiktet och                   | prickly sensation in fingertips and toes;     |
|                                |                     | nacken; stickningar i fingertoppar                 | headake, dizziness, nausea, vomiting,         |
|                                |                     | och tår;                                           | diarrhoea.                                    |
|                                |                     | Huvudvärk; yrsel, illamående,                      | Extreme case                                  |
|                                |                     | kräkningar, diarré                                 | Muscular paralysis; pronounced respiratory    |
|                                |                     | Extrema symptom:                                   | difficulty; choking sensation; death trough   |
|                                |                     | Muskelförlamning;                                  | respiratory paralysis may occur within 2-24   |
|                                |                     | andningssvårigheter; känsla av att                 | hours after ingestion.                        |
|                                |                     | kvävas;                                            | ·                                             |
|                                |                     | Man kan vara död inom 2-24                         |                                               |
|                                |                     | timmar efter att ha fått i sig giftet, på          |                                               |
|                                |                     | grund av att andningsmuskulaturen                  |                                               |
|                                |                     | förlamas.                                          |                                               |
| Dinophysis spp.                | Diarrehetic         | Milda symptom:                                     | Mild case:                                    |
|                                | shellfish           | Efter cirka 30 minuter till några                  | Within 30 min-a few hours:                    |
|                                | poisoning           | timmar:                                            | dizziness, nausea, vomiting, diarrhoea,       |
|                                | (DSP)               | yrsel, illamående, kräkningar, diarré,             | abdominal pain.                               |
|                                |                     | magont                                             | Extreme case:                                 |
|                                |                     | Extrema symptom:                                   | Repeated exposure may cause cancer.           |
|                                |                     | Upprepad exponering kan orsaka                     |                                               |
|                                |                     | cancer                                             |                                               |
| Pseudo- niztschia spp.         | Amnesic             | Milda symptom:                                     | Mild case:                                    |
|                                | shellfish           | Efter 3-5 timmar:                                  | Within 3-5 hours: dizziness, nausea,          |
|                                | poisoning           | yrsel, illamående, kräkningar, diarré,             | vomiting, diarrhoea, abdominal cramps.        |
|                                | (ASP)               | magkramper                                         | Extreme case:                                 |
|                                |                     | Extrema symptom:                                   | dizziness, hallucinations, confusion, loss of |
|                                |                     | Yrsel, hallucinationer, förvirring,                | memory, cramps.                               |
| Chaetoceros                    | Mechanical          | förlust av korttidsminnet, kramper Låg celltäthet: | Low cell numbers:                             |
| concavicornis/                 | damage              | Ingen påverkan.                                    | No effect on fish.                            |
| C.convolutus                   | through             | Hög celltäthet:                                    | High cell numbers:                            |
|                                | hooks on            | Fiskens gälar skadas, fisken dör.                  | Fish death due to gill damage.                |
|                                |                     |                                                    |                                               |
| Pseudochattonella spp.         | setae<br>Fish toxin | Låg celltäthet:                                    | Low cell numbers:                             |
|                                |                     | Ingen påverkan.                                    | No effect on fish.                            |
|                                |                     | Hög celltäthet:                                    | High cell numbers:                            |
|                                |                     | Fiskens gälar skadas, fisken dör.                  | Fish death due to gill damage.                |
|                                | I                   |                                                    |                                               |

Översikt över några potentiellt skadliga alger och det aktuella giftets effekt. Overview of potentially harmful algae and effects of toxins. Manual on harmful marine microalgae (2003 - UNESCO Publishing).

Kartan på framsidan visar viktat medelvärde för klorofyll a,  $\mu$ g/l (0-20 m) vid de olika stationerna. Förekomst av skadliga alger vid stationer där arter analyseras markeras med symbol.

The map on the front page shows weighted mean of chlorophyll a,  $\mu g/l$  (0-20 m) at sampling stations. Presence of harmful algae at stations where species analysis is performed is shown with a symbol.

