

A FOREST EVAPOTRANSPIRATION MODEL USING SYNOPTIC DATA

by Björn Bringfelt

A FOREST EVAPOTRANSPIRATION MODEL USING SYNOPTIC DATA

by Björn Bringfelt

Issuing Agency
SMHI
Box 923
S-601 19 NORRKÖPING
SWEDEN

Report number
RMK 36, RHO 34
Report date
November 1982

Author (s)

Björn Bringfelt

Title (and Subtitle)

A FOREST EVAPOTRANSPIRATION MODEL USING SYNOPTIC DATA

Abstract A model giving daily actual evapotranspiration values from synoptic data has been developed using results from the forest meteorological measuring site Velen in southern Sweden. The following submodels are included:

- Model for evaporation of rain water intercepted by the forest canopy. Parameters are the free throughfall coefficient and water storage capacity of the canopy. The model was developed using rainfall data from 29 troughs sited below and aside the canopy.

- Model for transpiration from the dry forest canopy. A physiological expression for the canopy surface resistance has been developed using 52 daily transpiration values obtained over the can-

opy by the Bowen ratio-energy balance method.

Using data from seven synoptic stations during seven warm seasons (April - October) monthly model evapotranspiration sums were compared to monthly data estimated from the hydrological water balance. The agreement was much better than using the traditional Penman formula with synoptic data. Thus, modelling of the special forest processes gives significant improvement of the monthly values. The model can now be run for about 190 synoptic stations in Sweden and comparisons can be made with evapotranspiration measurements made in other parts of the country.

Key words

Evapotranspiration
Actual evapotranspiration
Forest meteorology/hydrology
Synoptic data
Rain interception
Surface resistande/conductance
Water balance
Penman formula

Supplementary notes	Number of pages	Language
Slutrapport på NFR-projektet "Utveckling av metoder att bestämma	62	English
verklig avdunstning ur väderdata" G		

ISSN and title

0347-2116 SMHI Reports Meteorology and Climatology 0347-7827 SMHI Reports Hydrology and Oceanography

Report available from:

Liber Grafiska AB/Förlagsorder S-162 89 STOCKHOLM SWEDEN

LIST OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	PRINCIPLES OF FOREST EVAPOTRANSPIRATION	2
3.	SITE AND MEASUREMENTS	5
4.	MODELS USING INPUT DATA FROM THE SITE	7
4.1	Presentation of data	9
4.2	Models for evaporation of intercepted rain-water	9
4.3	Transpiration model	15
4.4	Combined evapotranspiration model	16
5.	USE OF SYNOPTIC DATA AS INPUT TO COMBINED EVAPOTRANSPIRATION MODEL	21
5.1	Synoptic stations used	21
5.2	Synoptic data used	23
5.3	Data processing	30
6.	TEST OF COMBINED MODEL USING INPUT OF SYNOPTIC DATA	33
6.1	Test against data of 1973 and 1974 from the Velen site	
6.2	Test against monthly evapotranspiration estimates	33 35
6.2.1	Independent estimates by the water balance method	35
6.2.2	Estimates by the Penman formula (with numerical example)	43
7.	SUMMARY AND CONCLUSIONS	50
	Acknowledgements	54
	REFERENCES	55
	APPENDIX	57

1. INTRODUCTION

Methods to use routine observations from synoptic weather stations to determine evapotranspiration from natural surfaces have been developed and used earlier. Mostly the so-called Penman formula has been used. Since this formula was developed for a standard water or grass surface most attempts for other types of surfaces cannot be expected to give adequate results.

Nevertheless, the Penman formula has been used to estimate potential evapotranspiration for larger areas of mixed composition using data from the synoptic tic network. Examples for Sweden of such application have been presented by Wallén (1966) and Eriksson (1981). Thom and Oliver (1977) showed that the Penman formula can be properly applied to natural surfaces only after some revision.

The principles of forest evapotranspiration are very different from those of low vegetation. These principles have earlier been applied to a real forest in Sweden (Jädraås) by Halldin and Grip (1979). In this report a model will be developed that can use routine synoptic observations to evaluate forest evapotranspiration on a daily basis.

It has been considered very important to treat forest surfaces separately because they cover as much as 55% of Sweden. In Sweden two special scientific forest meteorological measuring projects have been performed, one in the Velen hydrological research basin by the SMHI and the second one in Jädraås in the

middle of Sweden by the Swedish Coniferous Forest Project.

This report will use the results of the measurements in Velen and some foreign research results.

In short the steps of developing the model for forest evapotranspiration (ET) will be:

- Develop the formal model computation procedures from specific properties of forest canopies.
- Adapt the model and its parameter values using <u>daily values of ET</u> evaluated by the Bowen ratio-energy balance method and <u>measurement of rain interception</u> both data obtained at the Velen forest site in 1973 and 1974.
- Test the model against independent monthly ET-values evaluated by the water balance method in the Velen area during 1967-74.

2. PRINCIPLES OF FOREST EVAPOTRANSPIRATION

The model development to be described in the following sections is based on so-called Monteith equation. Calder (1977) gives a brief and excellent presentation of this equation and some of his text will be quoted here (with a change of a symbol):

' Hydrologists are often required to estimate evaporation losses from crops. both in studies of irrigation schemes and for predicting the effects of a land use change as part of a water resource study. The Penman (1948) equation provides a simple and practical method for estimating losses from grass and short crops, given basic meteorological variables, and has proved reliable over a wide range of environmental conditions. However, this equation is not suitable for application to tall crops such as forests whose aerodynamic and surface resistances are likely to be very different from grass. (The Penman equation will be discussed further in section 6.2.2, with numerical examples.) A modified version of the equation (Thom and Oliver, 1977) or the more general form of the equation given by Monteith (1965) which requires more detailed measurements of the meteorological variables, should then be used. For practical purposes the Monteith equation, although theoretically capable of giving accurate estimates of evaporation loss from any crop, is seldom used. Usually this is not because of a scarcity of the necessary meteorological data, which are becoming increasingly available from reliable automatic weather stations, but because of lack of knowledge of the crop aerodynamic and surface resistances.

Monteith (1965) showed that the latent heat flux from any surface could be expressed as:

$$\lambda E = \frac{\Delta R_n + \rho c_p (e_s - e)/r_a}{\Delta + \gamma (1 + r_s/r_a)}$$
 (W m⁻²)

where

WITE		
E		$(kg m^{-2} s^{-1})$
γ	= psychrometric constant	$(kPa \ ^{\circ}C^{-1})$
λ	= latent heat of vaporisation	$(J kg^{-1})$
Δ	= slope of the saturation vapour pressure curve (= $de_{_{\rm S}}/dT$)	(kPa °C ⁻¹)
		$(W m^{-2})$
ρ	= density of air	$(kg m^{-3})$
CD	= specific heat of air	$(J kg^{-1} C^{-1})$

 $r_{\rm a}$ is the aerodynamic resistance to the transport of water vapour from the surface, at an unknown vapour pressure ${\rm e}_{\rm o}$, to some reference level above, where the vapour pressure is known to be e, defined as:

$$r_a = \frac{\rho c_p}{\gamma} \frac{(e_o - e)}{\lambda E} (s m^{-1})$$

and $r_{\rm s}$ is the resistance to the transport of water vapour from some region within or below the surface at a water vapour pressure, ${\rm e}_{\rm so}$, to the surface itself defined as:

$$r_s = \frac{\rho c_p}{\gamma} \frac{(e_{so}^{-e}e_o)}{\lambda E} (s m^{-1})$$

Thus it is possible to calculate evaporation losses if the relevant meteorological data are available and if $r_{\rm a}$ and $r_{\rm s}$ can be estimated under the environmental conditions pertaining. If E is to be calculated for a forest over a time period which includes precipitation the problem reduces to:

- (1) Developing a canopy interception model which will predict the length of time for which the canopy is wet, following precipitation, when $r_{\rm S}$ can be considered to be zero.
- (2) Estimating $r_{\rm S}$ when the canopy is dry, when $r_{\rm S}$ is a purely physiological resistance and is likely to be a complex function of both past and present environmental factors.
- (3) Estimating ra.

The equation can also be used to estimate the canopy parameters r_a and r_s if values of E and the meteorological variables are available.

It is the crucial point of the Monteith equation that the meteorological data used can be measured directly. Therefore \mathbf{e}_{S} (saturation vapour pressure) and \mathbf{e} (actual vapour pressure) both refer to some distance from the surface (at a reference level below or above the top of the vegetation) where they can be measured.

The symbol ${\rm e}_{\rm SO}$ (denoted incorrectly as ${\rm e}_{\rm S}$ by Calder (1977) but changed to ${\rm e}_{\rm SO}$ in the quotation above) stands for vapour pressure within the surface (e g inside stomatal pores) where the air is saturated.

The Monteith equation has been discussed also by Bringfelt (1975). In the model to be developed here, the Monteith equation will be applied separately for the cases of dry forest (transpiration) and wet forest (evaporation of intercepted rain water).

During times of appreciable water loss from dry forest, the last term $(\rho c_p(e_s-e)/r_a)$ dominates the numerator and in the denominator r_s/r_a is 10-50. Retaining only the last term in both numerator and denominator gives:

$$\lambda E \approx \frac{\rho c_p}{\gamma} \frac{e_s - e}{r_s}$$

(This can be obtained from the definition of $r_{\rm S}$ above by putting ${\rm e}_{\rm SO}$ – ${\rm e}_{\rm O}$ \approx ${\rm e}_{\rm S}$ – e which is a good approximation for a dry forest). Thus, transpiration can be expressed as vapour pressure deficit in the free air at some level within or above the forest divided by the surface resistance. This simple relation was used in the Velen forest to derive expressions for the transpiration as function of vapour pressure deficit and global radiation. For the data of 1973 and 1974 $r_{\rm S}$ was found to depend on these two meteorological variables and not on soil water content. See Bringfelt (1982).

In a dry forest the canopy itself has to regulate the water loss*. In other case the forest would soon dry out due to the ability of the stirred air to take away the water vapour (low r_a).

^{*}This is made by the stomatal pores resulting in a stomatal conductance $k_{sc} (\text{m s}^{-1})$ per unit area of transpiring surface. To obtain the surface conductance k_{sc} of the whole canopy, k_{sc} has to be multiplied by the leaf area index, (LAI). The surface resistance is $r_{s} = k_{s}^{-1} = (k_{sc} \cdot \text{LAI})^{-1}$.

For the case of wet forest r_s is near zero so r_a cannot be neglected. In the model a constant value for r_a is used throughout. Thus, following Thom and Oliver (1977) the evaporation from the <u>completely wet</u> forest is given by a constant multiplied by the vapour pressure deficit in the air.

The rate of evaporation from a wet forest is known to be of the order of three times as large as the rate of transpiration from the dry forest under the same weather conditions, see Stewart and Thom (1973). This illustrates the drastic difference between dry and wet canopy which holds for forest but not for grass. See also Calder (1979).

The details in application of these principles in the practical evapotranspiration model will be given in the following sections.

3. SITE AND MEASUREMENTS

The evapotranspiration during two summer seasons from a forest in the Velen area between the lakes Vänern and Vättern in Sweden was evaluated by the Bowen ratio - Energy Balance method. Hourly averages of radiation and profiles of temperatures and humidity were recorded continuously in a 54 m high meteorological mast (58.802°N, 14.316°E). See figure 1. These data were taken above the forest canopy. The vapour pressure deficit (VCD), to be used below, was taken at a height within the canopy: 16 m above ground.

The evaporation of rain water intercepted by the forest canopy was measured by rain collecting troughs sited in clearings and below the canopy.

The site is a flat area with a 60 years old forest of mean tree height 20 m. The stand is dense with nearly 1 500 trees per hectare with a leaf area index estimated as 5. The forest is mainly coniferous and the prevailing tree species are Picea abies 74%, Pinus silvestris 27% and Betula verrucosa 9%. The site and measurements have been described in detail by Bringfelt and Hårsmar (1974), Bringfelt and Orrskog (1976) and Bringfelt et al (1977). For data see also Bringfelt (1980).

For the Velen hydrological basin see section 6.2.1.

		AST MEASURE	MENTS		A GENERALIS		
1974 HEAT STORAGE: TEMPERATURES IN CANOPY, SOIL AND AIR CONTINUOUSLY		WIND: DIRECTION Ø, PROFILE ABOVE	DITY:	WIND:	STUDIES EDDY FLUX: RAPID VARIATIONS: OF TEMP, HUMIDITY AND VERTICAL WIND.	1973-74 INTERCEPTION (TOTAL RAINFALL P AND THROUGHFALL T): 29 TROUGHS BELOW CANOPY AND IN CLEARINGS, 2 ACCUMULATORS.	1972 - 74 CONTINUOUS RAIN RECORDER IN A CLEARING
	Q	Ø 50m-	T, e				
	Q RJ Rt Q	u 40 - u u u 30 -	T,e T,e T,e		T'e' w'		
T T	ARRAMA	5 m 20 -	T, e d	בככם כ כ כ כ		T T T T	PH

Figure 1 Measurements in and around the meteorological mast in Velen 1971-74.

4. MODELS USING INPUT DATA FROM THE SITE

This section will deal with the theory for a model of forest evapotranspiration and test it using input data from the measuring site in Velen.

Below will be given a symbol list and the model equations to be discussed in the following sections.

SYMBOL LIST

INTERCEPTION MODEL

Input variables

AR (AN) daytime (nighttime) rainfall (mm)

VCD daytime average water vapour concentration deficit (g m)

ASTR astronomical daylength (hours)
NET (alternative input variable)

daytime net radiation (kWh/m²)

Parameters

S water storage capacity of forest canopy (mm)

k = 1 - p where p is the free throughfall coefficient

A time constant for the evaporation rate after rainfall

 $(mm g^{-1}m^{3}h^{-1})$

M rate of forest evaporation during rainfall (mm/hr)

 T_{IJ} rough storage capacity of ground and low vegetation (mm)

Derived variables

VR (VN) duration of daytime (nighttime) rainfall (hours)

E_{RATN} daily evaporation during rainfall (mm)

 E_{D} daytime evaporation from a steadily saturated canopy (mm)

C-- water stored on the forest canopy (mm):

at sunrise (C_{UP}), at start (C_{AM}) and end (C_{PM}) of daytime rainfall period, at sunset the preceding ($C_{\mathrm{i-1}}$) and current

(C;) day

 $E_C(E_{IJ})$ daytime evporation from canopy (ground and low vegetation)

(mm)

 T_N (T_R) throughfall during night (day) (mm)

EX exponential reduction factor for the water stored on the

forest canopy after nighttime or daytime rainfall

TRANSPIRATION MODEL

Input variables

RIS daytime average flux of global radiation (W m⁻²)

VCD daytime average water vapour concentration deficit (g m⁻³)

Parameters

a, b and c (In Lohammar equation)

Constants

L latent heat of vapourization (2500 Jg⁻¹)

Derived variables

 \overline{E} daytime average transpiration flux (W m⁻²)

VR (VN) duration of daytime (nighttime) rainfall (hours)

E_{TRA} daily transpiration sum (mm)

MODEL EQUATIONS

INTERCEPTION MODEL

$$VR = MIN(ASTR, 7 \cdot {}^{10}log(1 + AR))$$
 (1)

$$EX = EXP(-A \cdot \overline{VCD} \cdot ASTR/2S)$$
 (2)

$$E_{RAIN} = M \cdot VR \tag{3}$$

$$C_{UP} = MIN(S, C_{i-1} + k \cdot MIN(S/k, AN))$$
(4)

$$C_{AM} = C_{UP} \cdot EX \tag{5}$$

$$C_{PM} = MIN(S, C_{AM} + k \cdot MIN(S/k, AR - E_{RAIN}))$$
 (6)

$$E_C = (C_{UP} + C_{PM})(1 - EX) + E_{RAIN}$$
 (7)

$$T_{N} = AN + C_{i-1} - C_{UP}$$
 (8)

$$T_{R} = AR - E_{RAIN} + C_{AM} - C_{PM}$$
 (9)

$$E_{U} = MIN(T_{U}, T_{N}) + MIN(T_{U}, T_{R})$$
 (10)

$$C_{i} = C_{PM} \cdot EX \tag{11}$$

TRANSPIRATION MODEL

$$\overline{E} = \frac{a}{(b + \frac{1}{\overline{RIS}})(c + \frac{1}{\overline{VCD}})}$$
 (12)

$$VN = MIN(24 - ASTR, 7 \cdot {}^{10}log(1 + AN))$$
 (13)

$$VR = MIN(ASTR, 7 \cdot {}^{10}log(1 + AR))$$
 (1)

$$E_{TRA} = \overline{E} \cdot MAX(0, ASTR - 0.5 VN - 1.5 VR) \cdot 3.6/L$$
 (14)

4.1 Presentation of data

The data from the Velen site presented in the appendix summarize the data of theearlier measuring project. Data exist from 296 days in the warm seasons of 1973 and 1974. Complete data (with evapotranspiration values) exist for 127 of these days. The data are used here as input and test data to the models. The interception data are summarized in table 2.

4.2 Models for evaporation of intercepted rain water Model for interception on the forest canopy

Theory

The model uses as daily input data:

- Rainfall during the preceding 12 nighttime hours and during the 12 daytime hours. (A 24 hourly sum can also be used, but it has to be split up into these two parts before entering the model).
- The sum of the hourly values of water vapour concentration deficit (VCD) over the daylight period.

The model was derived from an equation proposed by Rutter et al (1971/1972):

$$-\frac{dC}{dt} = \frac{C}{S} E_S$$

where S is the water storage capacity of the canopy and

C (<S) is current storage on the canopy,

 E_S is the evaporation rate from the canopy when the storage is largest, i.e. equal to the capacity S. Then the evaporation rate - $\frac{dC}{dt}$ corresponds to current storage. The evaporation rate is assumed proportional to the amount of water stored on the canopy.

The model is based on the solution

where the storage after one daytime is reduced by the factor e
$$-\frac{E_S}{S} t$$

For a wet forest canopy \mathbf{E}_{S} is proportional to VCD, following Thom and Oliver (1977).

Summing over the daylight hours makes it possible to write

$$E_D = A \cdot \Sigma \ VCD = A \cdot ASTR \cdot \overline{VCD}$$

(A dependence of $\mathbf{E}_{\mathbf{D}}$ on net radiation $\mathbf{E}_{\mathbf{D}}$ = A \cdot NET has also been tested, see table 2.)

For day No. i the model equations 1 - 11 have to be used in that order. The model gives the evaporation during daytime neglecting nighttime evaporation.

The model calculates for successive days C_i and actual evaporation $E_{\bar C}$ and $E_{\bar U}$ (see underlined equations). Thus, C_i from the preceding day is used as C_{i-1} for the next day etc.

The calculations must be initialized on a day (i = 1) when $C_{i-1} = C_{o} = 0$, i.e. when the canopy is dry.

The model works on a daily basis, but there is some subdivision within each day. Thus, the daytime rainfall AR (mm) is taken to occur during VR of the daytime hours (see figure 2).

The model assumes that in the daytime evaporation will reduce water storage by the factor EX after a rainfall (equations 2, 5, 7 and 11). For practical reasons $\overline{\text{VCD}}$ • ASTR is calculated also using values during the rainfall. Since VCD is then very small (table 1) the result will fairly well hold for the periods without rainfall as assumed in the model.

Equations 4 and 6 use definitions of S and k according to Bringfelt and Hårsmar (1974) to calculate the water stored on the canopy after a rainfall. In equation 6 the daytime rainfall amount AR is reduced by the evaporation $E_{\rm RAIN}$ estimated to occur during the rainfall.

For M (see eq. 3), the evaporation rate from the forest canopy during rainfall, the value 0.05 mm/h has been used.

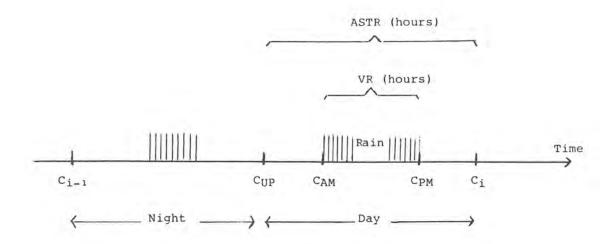


Figure 2 Time intervals used in the model for daily evaporation of rain water intercepted on the forest canopy.

This value was obtained directly from the mast measurements using the Bowen ratio - energy balance method for 18 daytime rainfall events during totally 73 hours, see table 1.

The rate was correlated to vapour concentration deficit, global and net radiation, rainfall rate and wind speed. The best coupling was found to radiation. The rate did only in one case exceed 10% of the rainfall rate. According to Thom (1979) such a rate requires that wet bulb depression and wind speed are high enough. No such coupling could be found in the Velen data and for simplicity just a fixed value of M will be used in the model.

In model operation, E_{RAIN} (the daily evaporation during rainfall) was obtained by equation 3, multiplying M by the rainfall duration VR.

Test of forest canopy interception model

The interception measurements available over periods of 3-30 days (average one week) will here be used to test the interception model developed.

The interception model is believed to relate interception to rainfall rather properly since the model has been developed and tested using data from the same type of gauge (i e troughs) both for input (rainfall in clearings) and output (interception on tree canopy). The measured data on interception in table 2 were calculated by subtracting rainfall in the troughs below canopy (throughfall) from rainfall in the troughs in clearings. See Bringfelt and Hårsmar (1974) and Bringfelt (1980) for a full discussion and complete data.

Table 1

Data obtained over the Velen forest for daytime rainfall periods

Date	Hours	VCD g/m³	u m/s	RIS W/m ²	R mm/h	EB mm/h
730717	8 - 9	0.6	3	203	4	0.05
24	19 - 21	0.2	2.5	222	2	0.01
0804	15 - 18	0	3	179	3.5	0.07
08	6 - 12	0	5	138	1	0.07
0920	6 - 10	0.04	4	39	3	0.01
740529	15 - 18	0.2	3	206	0.8	0.07
30	7 - 8	0	3.6	346	0.5	0.08
0714	9 - 14	0.1	-	59	4.2	0.02
0810	11 - 14	0.6	2	81	5	0.14
11	16 - 19	0.4	2	176	4.4	0.02
15	7 - 11	0	3	66	0.6	0.03
16	16 - 20	0	3	181	1	0.01
27	18	0.3	4.5	237	10	0.003
0903	10 - 15	0.1	4.5	64	1	0.04
05	7 - 9	0.5	5	65	1.8	0.04
05	16 - 19	0.1	3	65	1	0.04
06	10 - 15	0	3	83	1	0.09
28	6 - 8	0	7	34	1	0.001

VCD = vapour concentration deficit, u wind speed, RIS global radiation, R rainfall rate, EB evaporation rate obtained by the Bowen ratio - energy balance method.

The average value of EB turns out to be 0.05 mm/h.

There were a total of 28 measuring periods in 1973 and 1974. However, the model has been run for only 14 periods made up by putting together some of the original periods. This was made so that each period starts by zero water storage, which was necessary to initiate the model, see above.

Table 2 shows the results from five versions of the model. The version 'extended rain' is the one described above assuming the daytime rainfall to occur during a period of specified length. The versions 'instant rain' assume the rainfall to occur instantaneously at mid-day.

The values of parameters S, k and A were adjusted so that the interception sum for 1974 became equal to the measured sum i e 101 mm. Then it appears that also the sums for 1973 agree fairly well with the measured sums.

The correlation coefficient values at the bottom of table 2 are similar for the five model versions (about 0.985). In considering also the correlation to the data of total rainfall (which is smaller or 0.964) it is seen that the model makes better interception predictions than using the total rainfall data only.

The runs I - III of table 2 were made for S = 2 mm and k = 0.5 (or p = 0.5 for the free throughfall coefficient, p = 1-k) obtained in an earlier study of the same data, see Bringfelt and Hårsmar (1974). For the version "extended rain" (run No. III) A had to take the value 0.18 in order to get the sum 101 mm for 1974.

The above values of S and p (= 1-k) are rather high compared to other literature (see discussion of Bringfelt and Hårsmar, 1974). Therefore model runs IV and V were made. Then it turned out that the value A = 0.45 could be combined with lower S and p maintaining the sum 101 mm for 1974.

Run No. V is considered to be the most realistic, since the value of the free throughfall coefficient p = 0.367 (corresponding to k = 0.633) is probably better than p = 0.5 for the dense canopy. Furthermore, the sum of squares of differences between measured and calculated interception amounts is seen to be smallest (= 38.5) in this case. The parameter values and version of run No. V will be used in what follows.

In the model used above, no interception evaporation is assumed to occur during nighttime. However, Pearce et al. (1980) state that the energy used for interception evaporation is provided by large scale advection rather than radiation. Therefore, they say that nighttime evaporation rates from a wet forest canopy will not necessarily differ from daytime rates.

Model tests could have been made here, assuming also nighttime evaporation. However, this will be left for later studies using data from other forest sites as well. Then, the parameter values arrived at will be more safe and easier to compare to literature data. Using such a model probably will not improve the test results of the present study very much.

	Measured	Evapo	oration of	rain water in	tercepted on	the forest	canopy (mm)			
tion period of troughs	total rainfall	Measured -	Calculated							
	(mm)	measureu –		rsion nt rain"		by version "extended rain"				
			I	II	III	IV	V	Run No		
			A • NET 2.0 0.5 0.0065	A · ASTR · VCD 2.0 0.5 0.7	A • ASTR• VCD 2.0 0.5 0.18 0.05 0.16	A • ASTR • VCD 1.7 0.5 0.45 0.05 0.16	A · ASTR · VCD 1.5 0.633 0.45 0.05 0.16	form used for E _D S (mm) k A mm h ⁻¹ / (g m ⁻³ M mm/hr T _U mm		
730517-0604 0609-0613 0625-0812 0815-0904 0904-0912 0912-0915 0919-1002	33.0 · 7.0 154.8 28.0 2.9 0.8 61.3	12.6 2.8 32.8 7.4 1.7 0.5	11.61 2.56 35.93 6.47 1.45 0.40 16.83	11.61 2.56 36.30 6.47 1.44 0.40	12.40 2.62 36.11 6.62 1.50 0.40 15.94	11.20 2.32 34.97 6.02 1.51 0.40 16.24	11.30 2.26 33.95 6.16 1.87 0.51 15.39			
SUM 1973	287.8	73.8	75.25	75.88	75.59	72.66	71.44			
740524-0611 0617-0711 0711-0730 0730-0802 0809-0820 0826-0910 0919-1010	33.2 65.0 54.1 0.7 62.7 48.9	14.2 14.3 14.5 0.3 14.1 14.8 28.8	15.81 17.73 11.47 0.35 12.17 14.31 29.13	15.73 17.74 11.46 0.35 12.19 12.54 30.99	15.84 19.09 12.21 0.39 13.28 12.97 27.03	15.47 17.99 11.63 0.40 12.78 12.71 29.73	16.00 18.44 11.96 0.47 13.05 12.51 28.82			
SUM 1974	364.6	101.0	100.97	101.00	100.81	100.71	101,25			
R	0.964	-	0.988	0.986	0.983	0.987	0.986			
(xcalc-xmeas	3) 2		40.1	52.4	49.7	39.4	38.5			

Table 2

Results from five alternative versions of the interception model compared to measured data. The versions have been described in the text. For the meaning of the parameters - see the symbol list. At the bottom of the table are given values of R, the correlation coefficient and Σ ($x_{CALC} - x_{MEAS}$)², the sum of squares of differences between the 14 values of the column concerned and the corresponding measured interception amounts.

Model for interception on low vegetation and ground

In equations 8 and 9 the amounts of throughfall that have reached the low vegetation and ground during the night and daytime rainfall respectively are calculated from the water balance of the canopy. The throughfall amounts are used in the simplified equation (10) for evaporation of water intercepted on the ground and low vegetation.

This submodel cannot be tested against the trough data since the troughs were sited at about 1.5 m above ground or above the level of low vegetation and ground structures. A crude test is possible only in connection with the test of the combined evapotranspiration model. There, the value 0.16 mm for the water storage capacity $T_{\rm II}$ will be derived.

4.3 Transpiration model

This model presupposes a completely dry forest canopy. Bringfelt (1982) has tested some expressions for the transpiration flux E and canopy surface conductance $k_{\rm S}$ as function of global radiation (RIS) and vapour concentration deficit (VCD) against measuring data from the Velen site in 1973 and 1974. Hourly transpiration flux values for 52 days were evaluated by the Bowen ratio-energy balance method, using net radiation and vertical profiles measured above the dry forest canopy.

Daily averages of the flux rates were determined of transpiration E and global radiation RIS and of the vapour concentration deficit VCD. The expression derived from Lohammar et al (1980) showed to give good fit to the data and led to equation (12) for the transpiration flux rate.

The data in 1973 (15 days) gave that

$$a = 0.8645$$
 $b = 0.0075$ $c = 0.3226$

and the 1974 data (37 days)

$$a = 0.986$$
 $b = 0.0191$ $c = 0.1942$

 $\overline{\text{VCD}}$ daytime average vapour concentration deficit (g/m³) $\overline{\text{RIS}}$ and $\overline{\text{E}}$ are daytime average flux rates of global radiation and transpiration (W m¯²).

These expressions give that there is a systematic difference (≈ 30 %) in transpiration level for fixed $\overline{\text{VCD}}$ and $\overline{\text{RIS}}$ between the two summer seasons. This cannot reasonably be due to errors in measurement only and there are independent indications that the difference is real. Both alternatives will be used in the tests below.

As discussed by Bringfelt (1982), the reason for the smaller transpiration rates in 1974 than in 1973 may be the very dry spring of 1974 (only 2 mm precipitation between March 22 and May 26). This could have reduced the activity of the needles and leaves that summer, resulting in a smaller transpiration rate. However, there are no direct data available to confirm this hypothesis.

4.4 Combined evapotranspiration model

Description

This model consists of the following parts:

- evaporation of rain water intercepted on forest canopy (section 4.2);
- evaporation of rain water intercepted on low vegetation and ground (section 4.2);
- transpiration from the dry forest canopy (section 4.3);
- reduced transpiration in days with periods of wet canopy.

Interception

The evaporation of rain water intercepted on the forest canopy is calculated in days with rain during the daytime or during the previous night or days. As described in section 4.2 the model operates during successive days using the water stored on the canopy the previous sunset as input for each new night and day.

Transpiration

When the canopy is wet no transpiration is considered to take place. Calder and Newson (1979) have estimated that the number of hours when the canopy is wet is equal to 1.5 times the number of rain hours. Thus, in the model it was assumed that the daylength effective for transpiration is obtained by subtracting 50% of the duration of nighttime rainfall and 150% of the duration of daytime rainfall from the astronomical daylength.

In the model, the duration of nighttime (VN) and daytime rainfall (VR) are calculated by equation (13) and (1).

Then the transpiration flux rate \overline{E} obtained by equation (12) will be multiplied by the 'daylength effective for transpiration':

to get the day's transpiration sum ETRA in eq (14).

This is used also for days with dry canopy (VN = VR = 0).

The duration of daytime rainfall (VR) was derived as a function of the amount of rainfall (AR), see figure 3. The function obtained was used for modelling also the duration of nighttime rainfall (equation 13). Figure 3 shows very large scatter. This can probably be reduced, if separate analyses are made for different types of rainfall (showers, light rain etc.) given in the synoptic observations. Divisions as regards time of year and geographic location may also be made. Different kinds of data may be used for a study like this, such as synoptic data, rainfall records and manual notes.

Such a study would be worthwhile in making the evapotranspiration model more general.

As will be seen in section 6, the crude relation used in the present transpiration model gives good agreement with monthly measured data but larger scatter for daily data.

The daily input and output data for the combined evapotranspiration model have been listed on computer prints. The final result, the total evapotranspiration $E_{\overline{TOT}}$ should be compared to the measured value $E_{\overline{BOW}}$. This can be made for the two summer seasons in table 3.

The parameter values for the interception submodel have been adapted to the data of 1974 and showed good agreement also for 1973, see section 4.2.

The parameters (a, b, c) of the transpiration submodel were deduced for 1973 and 1974 separately using only days with completely dry canopy, see section 4.3.

Using also the parameter values (0.5 and 1.5) of Calder and Newson (1979) which give "daylength effective for transpiration" in partly rainy days, results in a good agreement with measured data for 1973 and 1974 separately, see table 3, underlined figures. This indicates that these parameter values are reasonable. See also section 6.1.

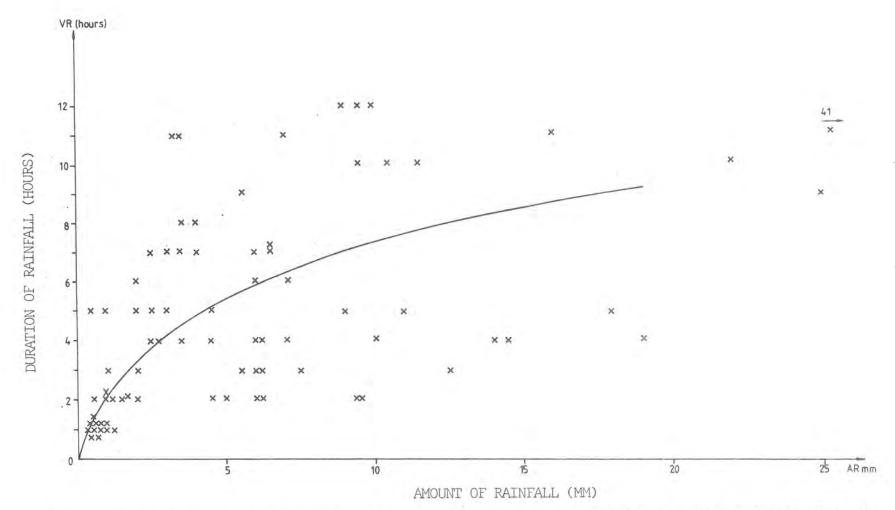


Figure 3 Deriving the relation for the furation VR as function of the amount AR for days with rainfall. Data from May - Oct. of 1972-74 at the Velen site have been used. Only daytime data (07 - 19 hours). The relation obtained was $VR = 7 \cdot 10 \log(1 + AR)$, see the curve.

This simple way of reducing the "effective daylength" can be replaced by a physically more attractive approach using the exponential function for decay of stored water of the interception submodel.

Using parameter values for transpiration deduced from 1974 gives underestimate of the 1973 evapotranspiration by about 30% (108 mm vs 141 mm). An equally large overestimate is made using the 1973 values of a, b and c in calculating the 1974 evapotranspiration (271 mm vs 208 mm).

This is a result of the systematic difference in transpiration between the two summer seasons as discussed in section 4.3.

It is interesting to study the relative magnitude of the evaporation of intercepted rain water and the transpiration. Both these quantities have been adapted to the corresponding measured data using the results from the interception troughs and the meteorological mast respectively. Studying the sum of the two cases denoted by a) in table 3 it turns out that canopy interception (EIC) is 19% of total evapotranspiration (ETOT) while transpiration is about 78%. The rest 3% is evaporation of interception on low vegetation and ground (EIU).

The parameters of the two interception models have been adapted to get this order of magnitude of EIU. Since no direct data of EIU are available from the site some values given by Monteith (1975) have been used. There the work of Helvey and Patric (1965) was referred to giving that for a forest EIU is of the order of 2-5% of annual rainfall. In our data (see "all days" of table 3) EIU was adapted so that is became some 3.5% of total rainfall (10/288 for 1973 and 14/365 for 1974).

Table 3

Test of evapotranspiration model (combined model) using data from the forest site Velen. The following values for the parameters will be used in the tests presented below (see case V of table 2).

Interception submodel:

S = 1.5 mm

k = 0.633

 $A = 0.45 \text{ mm h}^{-1}/(\text{g m}^{-3})$

M = 0.05 mm/h

 $T_{11} = 0.16 \text{ mm}$

Transpiration submodel:

For values of a, b and c, see 4.3. Two sets of values will be used: one set deduced from data of 1973, the other set deduced from data of 1974.

The figures are sums in mm over the days specified.

AN rainfall during the previous night (19-07)

AR rainfall during the day (07-19)

EIC evaporation by interception model for forest canopy

EIU evaporation by interception model for low vegetation and ground

ETRA transpiration by model for forest canopy

ETOT = EIC + EIU + ETRA calculated total evapotranspiration

EBOW measured total evapotranspiration

Data of	Values of a,b,c de- duced from transpiration		.l da	ys		Days with complete dat					
	data of	AN	AR	EIC	EIU	EIC	EIU	ETRA	ETOT	EBOW	
a) 1973 1973	1973 1974		10 10	24 24	4 4	110 80	138 108	141 141			
		(139	day	s)							
1974	1973	102	263	101	14	42	6	223	271	208	
a) 1974	1974	102	263	101	14	42	6	161	210	208	
		(157	(157 days)				(81	days	3)		

If evapotranspiration is to be modelled on days with missing site data, or in other areas, it is necessary to use routine observations from neighbouring synoptic stations. This problem will be studied in the rest of this report.

5. USE OF SYNOPTIC DATA AS INPUT TO COMBINED EVAPOTRANSPIRATION MODEL

If routine observations from synoptic stations can be used, it will be possible to calculate forest evapotranspiration almost continuously since synoptic data are available for almost every day. Furthermore, a resolution between different areas will be possible, since in Sweden there are about 190 synoptic stations. Here will be treated only the seven stations surrounding the Velen area.

5.1 Synoptic stations used

Routine observations from seven synoptic stations have been used to calculate daily evapotranspiration for the years 1967 - 1974. The stations are located around the Velen site at distances from 20 km to 65 km. Their positions can be seen on the map of figure 4 and latitudes-longitudes in table 4. This table also shows the number of synoptic observations per day during the various years.

Description of the siting of the stations:

Atorp Immediately to the west of the station there is spruce forest. To the east there is agricultural land. The station is in a garden.

<u>Västerplana</u> is located in an agricultural area 1.5 km to the east of Lake Vänern.

Borgunda is located in agricultural terrain sloping eastward.

Snavlunda is located in rolling agricultural country alternating with groves and lakes.

Fägre. The station is located in a garden in a flat agricultural area. Immediately to the east there is a grove at a height 35 m above the station level. Good wind shelter for the rain gauge is given from trees and buildings.

Karlsborg is located on the western shore of Lake Vättern.

Mariedamm is located in forest terrain sloping eastward.

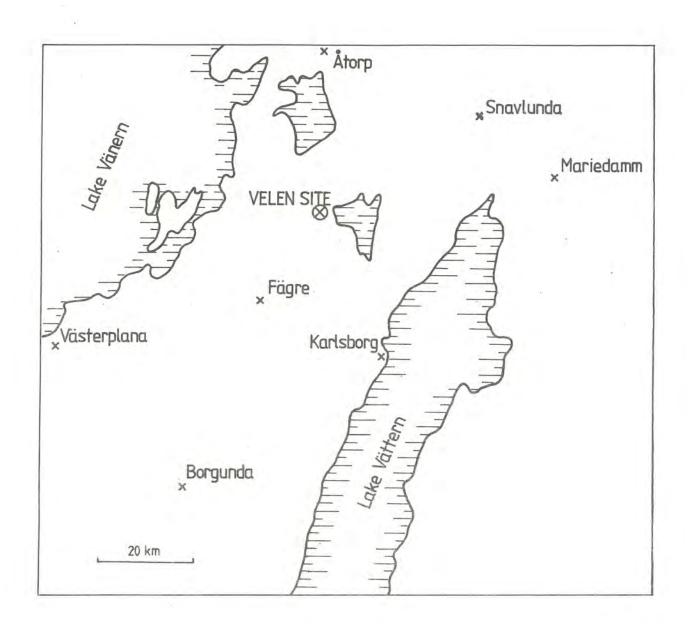


Figure 4 The map shows the location of the Velen site (between Lakes Vänern and Vättern).

Daily routine observations from the seven synoptic stations shown have been used in the forest evapotranspiration model.

Table 4 Number of daily synoptic observations at the seven stations used

Synop-	Latitude	Longitudo	Name	Y	YEAR							
stat no	Latitude	Longitude	Name	67	68	68 69		71	72	73	74	
428	5905 50"	14 ⁰ 22'5"	Åtorp	3	3	3	3	3	3	6	6	
532	58 ⁰ 34'	13 ⁰ 21'	Västerplana	3	3	3	3	3	3	6	6	
534	58 ⁰ 17'	13 ⁰ 48	Borgunda	-	-	_	4	3	3	6	6	
541	58 ⁰ 57'50"	14 ⁰ 54"0"	Snavlunda	4	4	4	4	4	4	8	8	
543	58 ⁰ 39'	14 ⁰ 8'	Fägre	3	3	3	3	3	3	6	6	
544	58 ⁰ 31'	14 ⁰ 321	Karlsborg	4	4	4	4	4	4	8	8	
560	58 ⁰ 52'	15 ⁰ 9'	Mariedamm	3	3	3	3	3	3	6	6	

3 means obs at 7, 13, 19h (06, 12, 18 GMT)

Only these two sets of observations have been in this study. 4 (8) in the table means that the above 3 (6) observations are available and have been used.

5.2 Synoptic data used

The most important daily meteorological input to the model described in section 4 are

- rainfall during the 12 preceding night-time hours and rainfall during the 12 day-time hours;
- day-time average of water vapour concentration deficit;
- day-time average global radiation flux.

For more details see section 4.1 and the appendix.

This section will describe how synoptic data are used to calculate these meteorological data necessary as input to the evapotranspiration model.

Calculation of 12 hourly rainfall

The synoptic data contain rainfall measured at 07h and 19h. A rain-free 12h-period is marked by -1 and a small but not measureable amount by 0. As input to the model these two cases have been given as zero preicpitation. Measured amounts were increased by 10 % in order to correct for the various kinds of losses at the gauge (evaporation loss, aerodynamic wind speed loss, e.g.). See Eriksson (1980).

⁶ means obs at 4, 7, 10, 13, 16, 19h

In table 5 the monthly rainfall amounts measured at the synoptic stations are compared with the amounts collected by the troughs in clearings at the Velen site. The interception amounts calculated by the model will be directly related to the rainfall amounts. Thus, if the rainfall is too small (as can be suspected using synoptic rainfall data, see below) the interception predicted will also be too small.

The amounts of Karlsborg are relatively small, and this is due to the free exposure of the gauge (section 5.1), so this station plus Mariedamm (having incomplete data) have been excluded in the comparison made in table 5.

The rainfall sums from the five remaining synoptic stations (increased by 10 %) are, in the average, smaller than the amounts collected by the troughs at the Velen forest site. Thus, a correction of 30 % instead of 10 % to the 454 mm would correspond to the sum (589 mm) of the Velen site. One reason for the large difference is that rainfall over forests are often larger than over other surfaces. Furthermore, also some of the five remaining stations are probably rather freely exposed.

Table 5 Monthly rainfall (mm) measured at seven synoptic stations and in clearings at the Velen site by troughs.

	MONTH	Åtorp	Västerplana	Borgunda	Snavlunda	Fägre	Karlsborg	Mariedamm	Average over the five stations to	the left Increased by 10 %	Velen site (troughs)
1973	06 07 08	29 93 52	13 76 57	17 64 48	16 120 49	19 49 46	13 40 22	20 69 47	19 80 50	21 88 55	20 100 76
	09	60	58	90	51	64	66	72	65	72	67
1974	05 06 07 08 09	16 42 64 76 111	21 21 37 32 77	32 53 43 47 54	23 46 45 29 97	19 60 40 39 74	17 26 40 7 47	54 77 50	22 44 46 45 83	24 48 51 50 91	18 67 68 74 99
Sums		543	392	448	476	410	278		454	499	589
Sums in- creased by 10 %		597	431	493	524	451	306		499		

Thus, larger corrections than 10 % would have been justified for most stations before running the forest model. However, more work is needed to establish proper correction factors. As illustrated by the similar model results in table 9 for Karlsborg and Åtorp 1973-74, the model results are rather insensitive to given rainfall amounts. More rain will give more evaporation of intercepted rain but smaller transpiration.

Calculation of daytime average water vapour concentration deficit (VCD)

A. Synoptic data available at six observations a day. The observations at 4, 7, 10, 13, 16, 19h (3, 6, 9, 12, 15, 18 GMT) are used.

Each observation consists of a value of relative humidity ${\rm R}_{\rm h}$ (%), water vapour pressure e (mb) and temperature T ($^{\rm O}$ C).

Then VCD is calculated from

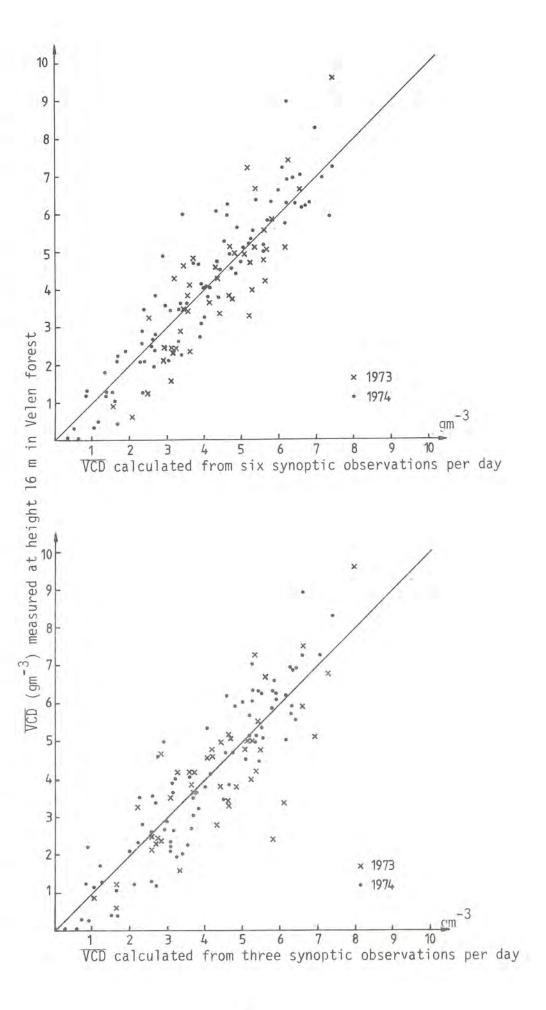
$$VCD = e(\frac{100}{R_h} - 1) \cdot \frac{0.622/R_d}{273.16+T} (g m^{-3})$$

where $R_d = 2.87 \cdot 10^{-3}$ mb g⁻¹ K ⁻¹m³ is the gas constant of air. The daytime $\overline{\text{VCD}}$ -value is formed by averaging the VCD-values from the observations during the astronomical day (sun above horizon).

In the upper part of figure 5 these $\overline{\text{VCD}}$ -values calculated with six daily synoptic observations available at Fägre are compared to daytime averages measured in the Velen forest.

B. Synoptic data available as three observations a day.

Used are observations at 7, 13, 19h (6, 12, 18 GMT).


VCD is calculated as above for 7, 13, 19h giving values y_7 , y_{13} , y_{19} .

Taking the time of day as x-axis and VCD as y-axis, the daytime average of VCD is calculated from the mean ordinate of the parabola passing through $(x=7, y=y_7)$, $(x=13, y=y_{13})$, $(x=19, y=y_{19})$:

$$y = \frac{y_7^{-2}y_{13} + y_{19}}{72} x^2 + \frac{1}{18} (-8y_7 + 13y_{13} - 5y_{19})x + \frac{1}{72} (247y_7 - 266y_{13} + 91y_{19})$$

Then, average of VCD over the astronomical day (sunrise at x_1 , sunset at x_2)

Figure 5 Daytime averages of water vapour concentration deficit in the air $(g m^{-3})$. Comparison between measurements studied in both cases. diagrams have been used six and three synoptic observations per day respectively. The same days have been at the forest site in Velen and values calculated from synoptic observations made at Fägre 20 km away. In the

is calculated as $\frac{1}{x_2-x_1}$ f y dx. Since VCD cannot be negative, y is taken as 0 wherever y < 0 in the integration interval $x_1 - x_2$.

In the lower part of figure 5 these VCD-values are compared to the measured daytime averages. As expected the figure shows that the scatter of values is larger using only three observations a day. The comparison has been made for the same days in both cases.

Using three observations a day (which is more often available than six observations a day, see table 4) the scatter in figure 5 shows that the standard deviation of the error is about 20 % of the computed daily VCD-value.

Figure 5 shows that there is no systematic difference between the VCD-values measured in the Velen forest canopy (at height 16 m) and the values obtained from synoptic data at Fägre 20 km away. As stated above, this station is only partly in forest surroundings. This confirms what was believed, namely that daytime vapour concentration deficit shows no systematic difference between forest and agricultural sites.

Calculation of daytime average global radiation flux, $\overline{ ext{RIS}}$

These calculations have been made by a computerized radiation model, kindly supplied by Roger Taesler.

The global radiation to a horizontal surface on the ground is calculated for each hour during the astronomical day and then averaged to form $\overline{\text{RIS}}$.

For each hour the model uses

- the sun elevation calculated from latitude and time (degrees)
- water vapour pressure (mb)
- total cloud cover (eights)
- the albedo of cloud and ground.

At first the global radiation with clear skies is calculated. Then the optical airmass is calculated from the sun elevation. The attenuation of solar radiation for 62 wavelengths of a decomposition of the solar spectrum is calculated using the optical airmass, the water vapour pressure and the turbidity.

Following Liljequist (1979) the effect of cloudiness is considered by reducing the global radiation with clear skies by a factor composed of albedoes:

where the denominator regards repeated light reflexions at cloud base and ground.

 $a_{\rm GROUND}$ is the albedo of the forest. It is known that forest albedoes are low, see Stewart (1971), and here will be used $a_{\rm GROUND}$ = 0.08 the value obtained from measurements above the Velen forest. see Bringfelt et al (1977).

For the effective albedo of the sky is used

$$a_{CLC} = \frac{n}{8} \cdot a_{CL}$$

where n is total cloud cover in eights and $a_{\rm CL}$ is the effective albedo of the cloud cover as such.

Calculations have been made using various forms for a_{CL} . The following expression showed the best fit to the measured global radiation values over the Velen forest:

$$a_{CL} = 0.033 \cdot n + 0.434$$

giving
$$a_{CL} = 0.5$$
 for $n = 2$ and $a_{CL} = 0.7$ for $n = 8$

This expresses that clouds covering only a small part of the sky will have reduced influence on the sky albedo $a_{\rm CLC}$. On a long term average a relation of this kind seems plausible.

Global radiation is calculated for each daylight hour and in the same way for the two cases of six or three daily synoptic observations available. Table 6 shows, for a given hour, what observation of cloudiness and humidity is used.

Figure 6 compares the ability of the model to simulate daily global radiation sums for the two cases of six and three daily synoptic observations. Exactly the same days have been used in both cases. The improvement in using six observations is noticeable but not as clear as for VCD in figure 5.

Global radiation (kWhm⁻²) measured above the Velen forest

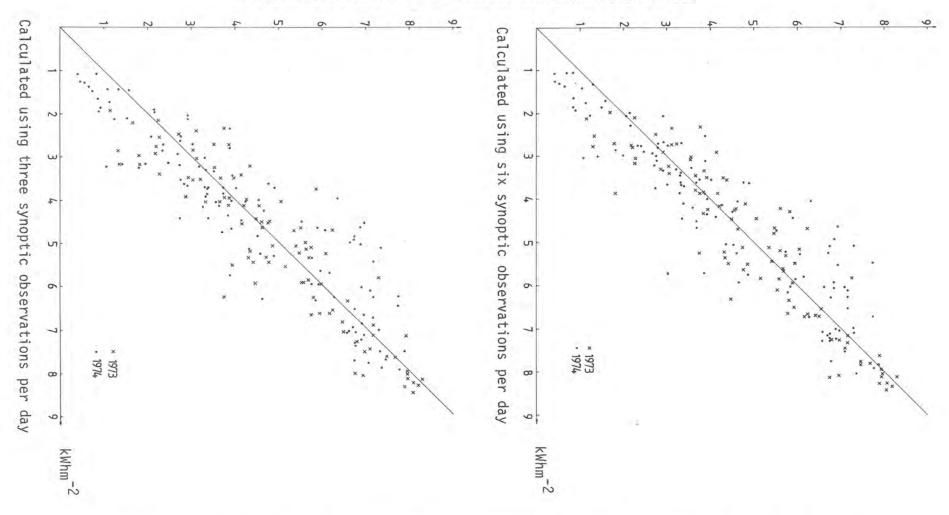


Figure 6 Daily sums of global radiation over forest (kWh m⁻²). Comparison between measurements above the forest in Velen and values calculated by the radiation model (parameter values described in the text) using synoptic observations made at Fägre 20 km away. In the diagrams have been used six and three synoptic observations per day respectively. The same days have been studied in both cases.

The standard deviation of the error is about 20 % of the computed radiation sum, i.e. of the same magnitude as for VCD.

Table 6 The figures give the hour of the synoptic observation used to calculate global radiation for each daylight hour.

Thus, for hour 9 the observation made at 10h (7h) is used if six (three) daily observations are available.

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Six daily obs. available 4 4 4 4 7 7 7 10 10 10 13 13 13 16 16 16 19 19 19 19 19 19 19

Three daily obs.

available 7 7 7 7 7 7 7 7 7 13 13 13 13 13 13 19 19 19 19 19 19 19 19 19

5.3 Data processing

The synoptic data have once been stored routinely on magnetic tapes. One such tape contains the data from all 190 stations in Sweden during one year. In order to improve the ease of access, the data of 1967 - 1974 at the seven stations used in this study were converted to one single tape, which can be read by the forest evapotranspiration model, which is a FORTRAN program.

The data on this new tape have been stored on a monthly basis in the following order and for one day the data are arranged according to table 7.

January 1967: Station 428, 532, 534, 541, 543, 544, 560.

February 1967: Station 428, 532, 534, 541, 543, 544, 560.

December 1974: Station 428, 532, 534, 541, 543, 544, 560.

These data are read on a daily basis by the model program. The prescribed parameter values are used, and the results are given as daily values of evapotranspiration.

Below is given an example of the model output for one month of daily data. The data to the left in the heading of the table are values used by the model (calculated from synoptic data):

AN rainfall during the previous night (19 - 07h) mm

AR " " day (07 - 19) mm

ASTR astronomical daylength calculated from latitude and time of year (h)

GLOBAL global radiation Wh m⁻²

RIS daytime mean global radiation flux (W m⁻²)

VCD daytime mean vapour concentration deficit (g/m³)

Parameter values: See head of data list.

The values calculated by the model are given to the right in the heading (mm):

EIC evaporation by interception model for forest canopy

EIU evaporation by interception model for low vegetation and ground

ETRA transpiration by model for forest canopy

ETOT = EIC + EIU + ETRA calculated total evapotranspiration

```
ÉXOT DB-PPG. EVASYN
FOREST EVAPOTRANS PIRATION MODEL USING SYNOPTIC DATA
TREE CANOPY INTERCEPTION MODEL , PARAMETERS:
PC=FREE THROUGHFALL COEFF, KC=1-PC= .63300000 SC=WATER STORAGE CAPACITY(MM)= 1.5000000 AC=COEFF FOR RATE OF INTERCFPTION EVAPORATION= .45000000
GROUND AND LOW VEGETATION INTERCEPTION MODEL, PARAMETER TU= .16000000
TREE CANOPY THANSPIRATION MODEL, PARAMETERS:
A= .98600000 H= .19100000-001 C= .19420000
     .93600000
 AN=RAINFALL 19-07, AR=RAINFALLO7-19(MM)
                                                                                   RIS =DAYTIME MEAN GLOBAL PADIATION FLUX (4/M2)
ASTR=ASTRONOMICAL DAYLENGTH(HOURS)
GLOBAL=DAYTIME GLOBAL RADIATION WH/M2, VCD=DAYTIME MFAN VAPOUR CONCENTRATION DEFICIT(G/M²).
IN PM/DAT:
EI(CEU)=EVAPORATION CALCULATED BY INTERCEPTION MODEL OF TREE CANOPY(UNDERCANOPY)
ETRA=CALCULATED TRANSPIRATION ETOT=EIC+EIU+ETRA=CALCULATEC TOTAL EVAPOTRANSPIRATION
                   AN AR ASTR GLOBAL
                                                                RIS VCD.ASTR
                                                                                                          EIC EIU
                                                                           LATITUD=
4 71.42
9 94.85
4 106.30
51.19
6 24.87
F 4GRE
19730801
                                        SYNOPHR=
                                                                  271.74
359.59
389.34
178.88
173.66
211.78
                                             16.39
                                                         5366
6322
2891
2794
3391
5917
2777
6511
2534
                                                                                              5.81
6.55
3.17
1.55
4.53
                                             16.31
16.24
16.16
16.09
16.01
                     .00
                                 . 60
                                                                                                                                                2.89
3.15
2.67
2.32
   19733802
                                                                                                            .00
                                                                                                                                   2.82
   19730804
19730804
19730806
                      7.81
                                                                                 72.60
                                                                                                                         .16
                                                                                                                                                2.61
                                             15.93
15.86
15.78
15.70
15.62
                                  .00
6.27
.00
                                                                  365.09
175.16
412.67
                                                                                89.36
32.81
90.38
   19730807
                                                                                                                                                3.86
    19730808
19730809
19730810
                                                                                               2.48
   19730811
19730812
19730813
                    .00
                                  .00
                                                         5162
4467
                                                                  330.53
287.47
427.21
432.66
                                                                                                           -14
                                             15.46
                                                         6603
                                                                               114.72
                                                                                                            .00
   19730814
                                                         6652
                                   .00
                                                                  438,03
                                                                                                                         .00
                                                                                                             +00
                                   .00
                                                                   402.69
                                                                               169.48
                                                                                             11.20
   19730817
                        .00
                                                                                                                         .00
                                            15.05
14.96
14.88
14.79
   19730218
19730219
19730220
                                                         5646
4215
5169
                                                                  375.23
251.73
347.44
378.93
                                                                                                                                                3.60
2.39
2.40
3.53
                                                                                                            .00
                                                                                                                        .16
                                                                                62.93
   19730821
                                                         5606
    19730822
                                  .00
                                                                   324.66
                                                                                                             .00
                                                                                                                         .00
                                                                                                            .00
                                                                                                                                    2.32
                                                                                                                                                2.32
2.43
2.24
2.83
   19730825
                       . CU
                                             14.45
                                                         5922
                                                                   409.74
                                                                                66.98
                                   .00
                                            14.37
14.28
14.20
                                                                  332.28
269.89
377.20
                                                                                              5.64
4.95
7.47
                                                                                                            -00
     0733828
                                                                               106.08
                      100
                                                                                                                         .00
                                  . 00
                                            14.11
14.02
13.94
                                                                                                                                               1.61
   19733829
                                                         3155
                                                                                42.21
   19730831
MONTHLY SUMS:
                   29.37 20.35 471.01 148802 9796.16 2516.25 165.63 15.55 2.34 69.79
```

6. TEST OF COMBINED MODEL USING INPUT OF SYNOPTIC DATA

In section 4.4 was described how the interception and transpiration submodels were combined to a forest evapotranspiration model. That model was calibrated and tested using data from the Velen site.

In section 5 was described how routine synoptic observations were used to form the input necessary for the combined evapotranspiration model.

All these operations have been included in one computer programme using synoptic data to directly calculate forest evapotranspiration. Example of the output from this final model was given in section 5.3.

In the earlier sections data taken at the Velen site were used to improve the models (e g by adapting values of the model parameters) before they were tested against remaining independent data from the site.

In this section using synoptic data as input no model improvement will be made but only a test and comparison with measured evapotranspiration data. In section 6.1 the model output will be compared to measured evapotranspiration data at the Velen site. In section 6.2.1 comparison will be made with the completely independent monthly evapotranspiration data obtained by the water balance method in the Velen basin during 1967-74. In section 6.2.2 comparisons will be made with estimates by the Penman formula.

6.1 Test against data of 1973 and 1974 from the Velen site

This test will be made on the same period as in section 4.4 but the input will be synoptic data instead of data from the Velen site.

Table 8 shows that the use of input synoptic data from Fägre (bottom of table) does not influence the evapotranspiration level compared to using input data from the Velen site itself (middle of table).

This shows that the input data of Fägre (daytime averages of vapour concentration deficit, global radiation flux and 12 hourly rainfall sums obtained from synoptic observations) are consistent with the Velen site input data as regards the computed evapotranspiration sum over several days. That the input data as such are also similar was shown in figures 5 and 6 where the calculated values using synoptic data from Fägre were plotted on a day-to-day basis together with the measured data at the Velen site.

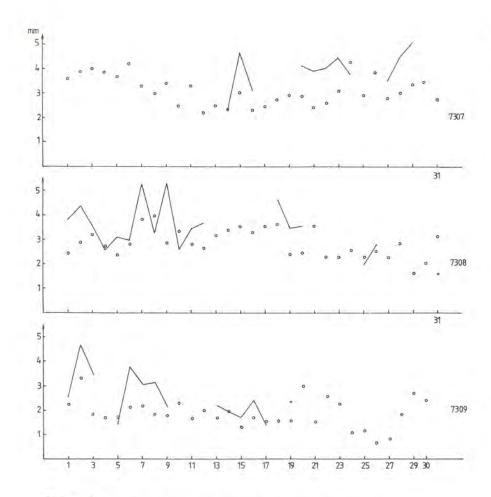
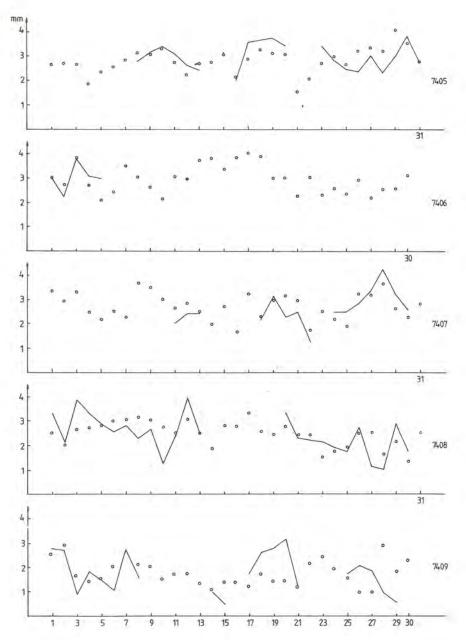



Figure 7
Comparison of daily values of forest evapotranspiration (mm) during 1973 and 1974.

The full lines give values evaluated from measurements at the Velen site by the Bowen ratio-energy balance method.

The circles give values computed by the model using routine observations from the nearest synoptic station Fägre 20 km from the Velen site. The values used of the constants in the transpiration submodel are all through those derived from the Velen measurements of 1974. The constants of the interception submodel are given in table 3.

For 1974 the model values in table 8 agree with the measured data since the model was adapted to these data. For 1973 the values generated by the same model are smaller than the measured values due to reasons discussed in section 4.4.

Figure 7 shows the same comparison but of values plotted on a day-to-day basis. Here the disagreement for individual days may be large. One reason is the scatter in daily VCD and global radiation values used as model input, see figures 5 and 6.

Another reason is the difficulty in determining the duration of daily rainfall (see figure 3) leading to an uncertain transpiration value. For the sums over months (or longer) these errors have been partly cancelled.

Table 8 Sum of daily evapotranspiration data (mm) of 1973 and 1974 using values of model parameters adapted to the measurements of 1974.

Number of days	1973 43	1974 84
Measured at Velen site by Bowen ratio-energy balance method	141	208
Calculated by model using input data from the Velen site	108	210
Calculated by model using input data from the synoptic station Fägre	110	208

6.2 Test against monthly evapotranspiration estimates

In this section the forest model will use synoptic data to calculate monthly evapotranspiration sums for April - October of 1967 - 1974. The results are presented in table 9 for each of seven synoptic stations surrounding the Velen area. These values will now be compared to monthly estimates (table 9), made by the water balance method and the Penman formula.

6.2.1 Independent estimates by the water balance method

Table 9 shows independent monthly evapotranspiration estimates obtained by the water balance method using hydrological measurements in the Velen basin and the Nolsjön sub-basin. The Velen basin is about 18 km long in the N-S direction and at most 4 km in the E-W direction. It has only one outlet (in the south) where the total runoff was measured. The area is covered by forest to 66 %, lakes to 10 %, swamps to 12 %, and cultivated area.

The basins and the data have been described by Waldenström (1977). The water balance method and errors will be discussed later in this section.

In table 9 the forest model gives rather similar estimates for all synoptic stations. Figures 8, 9 and 11b compare graphically the estimates from three of the synoptic stations with the water balance results from the Velen basin. In figure 13 is presented on a time axis the same data as in 11b.

As can be seen, the agreement with the water balance estimates is very good for June, July and August. Such a good overall fit was scarcely expected since the transpiration values of 1974 (the summer from where the constants in the transpiration formula was taken) were found to be lower than for 1973 by about 30 per cent (for corresponding values of vapour concentration deficit and global radiation), see Bringfelt (1982).

In principle there is reason to believe the model adaption to 1974 to give good agreement with the water balance results for that year. As discussed by Bringfelt (1982) and section 4.3, the dry spring of that year could have given comparatively low stomatal activity the rest of the summer and therefore low values of evapotranspiration. Some tendency of this can be seen in figure 11b where the values for 1974 estimated by the water balance method (encircled ordinates for May, June, July and August) are often lower than for these months of the remaining years.

In principle the 1974 points for the summer months should be expected to lie on the 45°-line (with slope 1:1) and the remaining years should have larger ordinates. But the figure 11b shows lower ordinates throughout.

Possible reasons for these and other differences between the results of the model and the water balance method will be discussed below.

- The Velen basin is covered by forest to only 66%. This should reduce the interception loss so that the water balance method will appear to give smaller evaporation (as far as interception is concerned). However, there are also water losses from non-forested areas and little can be said of the total effect. As an illustration can be seen that the total water balance estimate summed over the relevant months of table 9 are quite similar for the Velen basin (2379 mm with 66% forest) and the Nolsjön subbasin (2406 mm with 84% forest). Therefore this effect has not been considered in the present forest evapotranspiration model.

						A				T	В		С
		Atorp	Västerplana	Borgunda	Snavlunda	Fägre	Karlsborg	Mariedamm	Average over six synoptic stations (excl Borgunda)	Velen basin	Nolsjö subbasin	From synoptic data at Fägre	From detailed measure- ments in the Velen area
1967	09 10	62 60	55 57	-	52 48	52 58	41 43	55 54	53 53	50 23	-	40 19	-
1968	04 05 06 07 08 09	66 83 111 100 94 60 47	56 69 100 87 84 54	1111111	65 77 107 95 88 57 45	64 76 102 - 81 51 39	51 62 96 91 77 48 36	64 72 101 96 83 56 42	61 •73 103 94 85 54 42	13 63 93 96 83 47 74	38	54 81 133 - 89 43 12	40 53 97 83 47 26 1
1969	04 05 06 07 08 09	58 80 103 97 92 56 35	49 71 84 76 78 40 24	1111111	56 76 99 98 93 54 35	52 80 101 94 93 57 35	46 69 85 79 79 48 31	58 74 98 94 92 56 36	53 75 95 90 88 52 33	104 44 86 79 98 42 15	41 92 73 107 58 18	43 79 143 129 102 47 17	17 56 96 102 65 23
1970	04 05 06 07 08 09 10	51 75 106 85 75 60 43	43 54 105 86 70 58 44	1111111	57 77 108 88 77 53 41	52 74 106 90 76 58 44	40 53 82 70 57 46 39	49 71 108 89 71 54 43	49 67 103 85 71 55 42	79 27 91 104 80 34 60	- 47 87 135 65 18	25 93 146 95 82 43	15 65 104 85 64 29
1971	04 05 06 07 08 09	42 83 96 99 84 54 42	42 80 90 94 78 49 38	41 76 76 92 76 51 40	42 85 92 104 85 58 47	45 85 91 98 78 49 42	44 77 88 97 77 51 45	50 86 89 - 81 52 49	91 98 81 52 44	-7 50 89 96 70 48 26	48 88 86 63 49	51 112 113 113 80 40 18	- - 89 58 30 12
1972	04 05 06 07 08 09	54 78 90 90 76 54 30	53 82 87 94 78 53 34	54 79 88 93 75 48 30	52 82 88 91 78 55 31	54 87 90 96 73 54 31	55 72 84 92 73 51 31	57 80 93 95 79 55 34	53 80 89 93 76 54 32	16 58 75 114 93 38 25	22 61 81 119 88 40 29	49 99 113 130 79 40 12	
	04 05 06 07 08 09	55 77 102 102 82 57 26	51 74 99 96 88 56 27	57 78 99 98 88 56 28	59 82 104 10 4 87 52 25	52 80 99 96 88 55 24	47 73 97 96 88 58 28	61 80 103 99 85 56 30	54 78 101 99 86 56 27	26 62 81 95 93 50 3	30 70 76 88 100 56	53 97 146 132 98 45 8	
1974	04 05 06 07 08	53 83 96 93 84	57 84 92 86 78	59 87 89 83 79	59 87 93 87 83	55 87 88 84 77	54 83 90 85 70	92 88 83	87	23 56 74 87 63	- 66 76 83 65	65 122 122 109 85	

Monthly evapotranspiration estimates. The left part A gives values calculated by the forest model described in earlier sections (with constants deduced from the 1974 data). Daily meteorological observations from seven synoptic stations have been used as input. Table 9

The middle part B gives values calculated by the water balance method using hydrological measurements in the Velen basin (Waldenström 1977). To the right C are given potential evapotranspiration estimated by the Penman formula using synoptic observations at Fägre 20 km from the Velen site(Eriksson 1981) and detailed meteorological measurements in the Velen area 3 km from the site (Häggström 1973).

- It was shown by Bringfelt (1982) to be likely that lack of soil water did not reduce transpiration during 1973 and 1974. If this is so, the same conditions seem to hold during the remaining years. Then the model can be considered to give some sort of potential transpiration. If there still is lack of soil water for some months, this will be another reason for differing results.
- Figures 11b and 13 (bottom diagram to the left) show that the forest model gives higher values than the water balance especially in spring and to some extent in autumn. One possible reason for this is that the model assumes full stomatal activity (as deduced for summer mainly) while in reality the transpiration rate should be lower in spring and autumn.
- The average error in a hourly evapotranspiration value calculated from the mast data by the Bowen ratio-energy balance method was estimated by Bringfelt (1980) to ± 24 %. This is composed of errors estimated in net radiation (10 %), heat storage in soil, air and forest canopy (20 %) and the vertical gradients of potential temperature (0.03 °C) and vapour pressure (0.05 mb). These errors were estimated during the data processing considering deficiencies in instruments and the siting of sensors.

A monthly error will be smaller due to change of sign of the above errors from one hour to the next. However, the monthly error will not be much reduced since the error in some of the variables e.g. net radiation may be rather consistent for extended periods.

These mast data form the basis of the present monthly values deduced from synoptic observations, since the model and its parameters have been adapted to the data of 1974 at the Velen site. The contribution to the error introduced by the uncertainties in synoptic data has been estimated roughly (from the scatter - about 20 % - of daily values of VCD and global radiation in figures 5 and 6) to be 5 - 10 % of a monthly value. Then the error of a monthly or seasonal value calculated by the model is estimated to be between \pm 20 and \pm 25 per cent.

- There are errors also in the water balance estimates. As described by Waldenström (1977), the monthly evapotranspiration E from a defined catchment (like the Velen area) was calculated by subtracting the runoff A from the area, the change ΔM of water storage in snow, lakes, soil water, and ground water from the corrected precipitation P:

 $E = P - A - \Delta M$.

Then, E will be a residual term containing evapotranspiration but also errors in the other measured variables.

In such a short period as one month the errors in E may be large. In summer, when the evapotranspiration is high, the errors are less important than in the other seasons. In winter, with very low evapotranspiration, the errors will predominate in the estimate of E.

In spring and autumn errors may arise in the monthly estimates due to difficulties with water storage and snow cover estimates. For example, E may have been overestimated in April and underestimated in March, if the snow cover is not properly estimated in each month. Furthermore, melting water or water from a large rainfall may still lie on the ground surface at the turn of the month. If this is not regarded properly, there will be an incorrect partition of E between the two months. This effect can be seen in figure 13 for some spring and autumn months. Averaging the monthly values over several years will reduce these errors.

Waldenström (1977) calculated the error in E as the root sum square of the errors estimated for each term. It is stated that this error calculus is uncertain since the errors may depend on each other. For the summer months this method gave an error estimate of 12 mm, corresponding to about 15 % of the evapotranspiration value E.

The factors discussed above may also contribute to the deviation from the 1:1 line in figure 10. This figure uses the averages of table 9 over the model results for six synoptic stations. It is interesting to see that the scatter has not been reduced much compared to using one single station. This seems to reflect the relatively small contribution to the error in a monthly value introduced by errors in daily synoptic data from one station.

This discussion has pointed to some further studies to be made in order to improve the model prior to practical application. This will be discussed further in the summary section below.

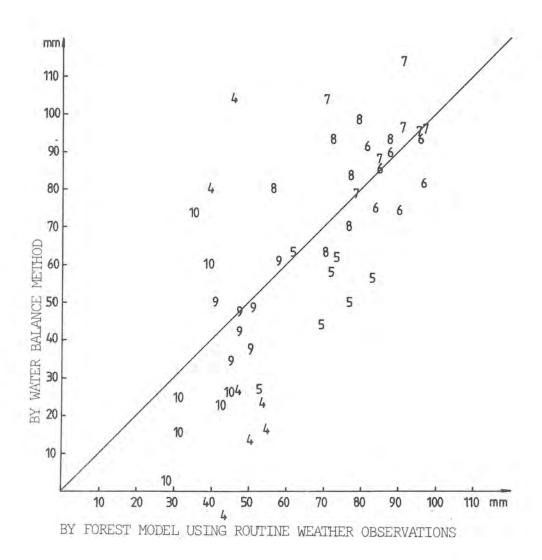


Figure 8 Monthly evapotranspiration values during 1967-1974 taken from table 9. The numbers denote month (5 = May etc). The ordinates are values calculated by the water balance method from measurements in the Velen hydrological basin.

The abscissae have been calculated for the same months by the forest evapotranspiration model using daily routine observations at Karlsborg.

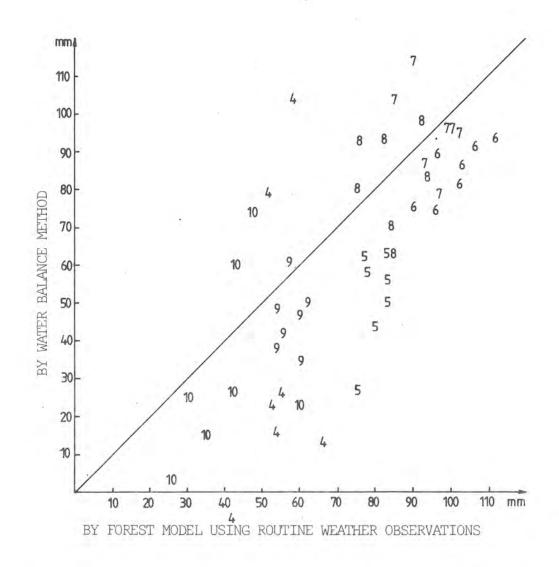
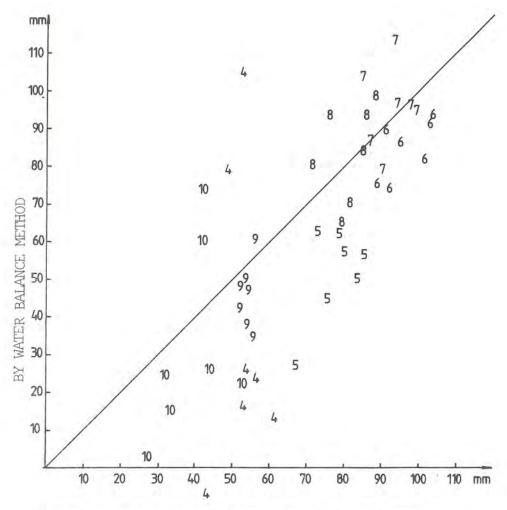



Figure 9 The same as figure 8 but observations at Atorp have been used.

BY FOREST MODEL USING ROUTINE WEATHER OBSERVATIONS

Figure 10 As figure 8 but the abscissae are averages over six values in table 9 calculated by the forest model - one for each synoptic station.

6.2.2 Estimates by the Penman formula (with numerical example)

Estimates by the Penman formula should be compared to values of real forest water loss, keeping in mind the following:

As pointed out by Calder (1979), the "Penman equation (Penman, 1948) is a special case of the more general Monteith equation in which the equation parameters, originally derived from consideration of actual losses from grass and open water surfaces, implicitly assume values of r_a and r_s appropriate to these surfaces (see Thom and Oliver, 1977). Observed evaporation rates have often been compared with either the Penman estimate for an open water surface, E_o , or that for a freely transpiring short crop, E_+ , where $E_+ < E_o$ ".

In the Penman formula, the surface resistance $r_{\rm S}$ of the Monteith equation (see section 2) has been put equal to zero, and therefore it is stated that the result should be "the potential evapotranspiration". However, the surface resistance is near zero only for wet vegetation covers, Thom and Oliver (1977) and Stewart (1977). In dry vegetation $r_{\rm S}$ is not zero even with non-limiting soil water.

The difference between dry and wet vegetation is rather drastic for a forest. Thus, as mentioned in section 2, the rate of evaporation from a wet forest is known to be of the order of three times as large as the rate of transpiration from the dry forest in the same weather conditions.

But why does the Penman formula give reasonable estimates for many types of vegetation including forests? The answer for forest is that both its numerator and denominator are far too small.

To illustrate this, a numerical comparison between the Penman formula and the Monteith equation will be made here, using the same values of constants and input data.

The following constants for air will be used:

Density ρ = 1.3 kg m⁻³ Specific heat C_p = 1000 J kg⁻¹ K⁻¹ Psychrometric constant γ = 0.66 mb K⁻¹

The derivative of saturation vapour pressure with respect to temperature:

$$\Delta = \frac{\text{de}_{\text{S}}}{\text{dT}} = 1.5 \text{ mb K}^{-1}$$

The example will use the following typical average values for daytime in summer:

Evaporation equivalent of net flux of radiant energy to the surface:

$$Q = 4 \text{ mm day}^{-1}$$

Vapour pressure deficit: e_s -e = 6 mb Wind speed: u = 2 m s⁻¹

The original Penman formula as given in the onset of the paper by Thom and Oliver (1977) gives

$$E_{PG} = \frac{\Delta \cdot Q + \gamma \cdot 0.26 \ (e_s - e)(1 + 0.54 u)}{\Delta + \gamma} = \frac{1.5 \cdot 4 + 0.66 \cdot 0.26 \cdot 6 \cdot (1 + 0.54 \cdot 2)}{1.5 + 0.66} = \frac{6.0 + 2.14}{1.5 + 0.66} = \frac{8.14}{2.16} = 3.77 \ \text{mm day}^{-1}$$

This corresponds roughly to $r_a = 62 \text{ sm}^{-1}$. (Is obtained using the constants above and equating the ventilation term (second term in the numerator) to the same term of the Monteith equation).

The above Penman equation refers to short green grass, and to get anything like the potential evaporation from a forest, the ventilation term (second term in the numerator) should reasonably be increased due to the rough forest surface.

From the Monteith equation is obtained
$$\Delta \cdot Q^{1} + \rho C_{p} \frac{e_{s} - e}{r_{a}} \cdot 3.6 \cdot \frac{D}{L}$$

$$E_{PF} = \frac{\Delta + \gamma}{\Delta + \gamma} \quad (mm \ day^{-1})$$

D is length of day (put here to 12 hrs) and L is latent heat of vapourization $(= 2500 \text{ Jg}^{-1})$. For the rough forest surface the aerodynamic resistance is of the order of $r_a = 5 \text{ s m}^{-1}$, se Stewart and Thom (1973). If Q = 4 mm/day is multiplied by 1.23 to allow for a lower forest albedo (≈8 %) compared to grass $(\approx 25 \%)$, then $Q^1 = 4.91$ and

$$\mathrm{E}_{\mathrm{PF}} = \frac{1.5 \cdot 4.91 + 1.3 \cdot 1000 \frac{6}{5} \cdot 3.6 \frac{12}{2500}}{1.5 + 0.66} = \frac{7.36 + 26.96}{2.16} = \frac{34.32}{2.16} = 15.89 \ \mathrm{mm} \ \mathrm{day}^{-1}$$

Obviously this is no useful measure of potential forest water loss. Considering the Monteith equation the value $r_{_{\rm S}}$ = 0 has been used above for surface resistance, and this corresponds to wet vegetation. The high value above roughly illustrates the rapid evaporation from a wet forest discussed in section 2.

The transpiration from a dry forest E_{DF} is regulated by r_{s} , which is of the order of 120 s m⁻¹ as obtained for the Velen forest in 1974. See also section 2. Then the actual water loss from a dry forest using the Monteith equation

$$E_{DF} = \frac{\Delta \cdot Q^{1} + \rho C_{p} \frac{e_{s} - e}{r_{a}} \cdot 3.6 \cdot \frac{D}{L}}{\Delta + \gamma \left(1 + \frac{r_{s}}{r_{a}}\right)}$$
 (mm day⁻¹)

gives

$$E_{DF} = \frac{7.36 + 26.96}{1.5 + 0.66 (1 + \frac{120}{5})} = \frac{7.36 + 26.96}{2.16 + 15.84} = \frac{34.32}{18.00} = 1.91 \text{ mm day}^{-1}$$

Thus, the value $E_{\rm PG}$ given above by the Penman formula is about twice as large as the adequate value $E_{\rm DF}$. Here no rainfall was assumed. In months with high rainfall the Penman formula may even underestimate the real water loss, see Eriksson (1981).

Results of the Penman formula have sometimes been thought to be adequate mostly due to their reasonable order of magnitude. However, the above example shows that reasonable values yielded by the Penman formula are accidental for forests. This is so, because both numerator and denominator are too small (in this example by a factor of the order of 5 - 10). This is a treacherous state of the art and can lead to erroneous conclusions.

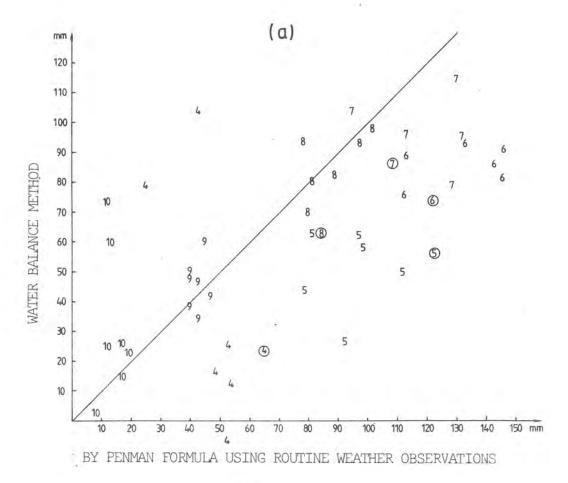
The Penman formula gives too much emphasis to incoming radiation - compare the relative magnitude of terms in the numerator of $E_{\mbox{PG}}$ and $E_{\mbox{DF}}$ above. Thus, the variations in radiation will have too large influence on the estimates.

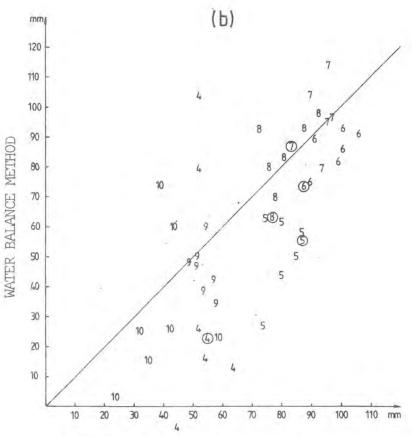
The evaporation from the wet forest as well as the transpiration from the dry canopy with no shortage of soil water can be regarded as examples of potential evapotranspiration. However, none of them can be estimated by the standard Penman equation.

The bottom diagram to the right in figure 13 shows results from three studies, using the Penman formula, averaged monthly over 1967-74 (Eriksson, 1981), 1931-60 (Wallén, 1966)* and 1968-71 (Häggström, 1973). To the left the forest model is compared with the results of the water balance method. As expected, the forest model turns out to be more successful than the Penman formula in simulating the water balance data. The Penman formula gives too large seasonal variation with too high values in summer (see numerical example above) and too low values in spring and autumn. The Penman formula disregards evaporation of rainwater intercepted on the forest canopy which has a large share in spring and autumn.

^{*}The paper of Wallén (1966) is used in the practical hydrological work in the SMHI.

According to the forest model the monthly interception value is rather constant in the average for the months studied, see table below. Thus the interception in per cent of the total evapotranspiration is largest in spring and autumn.

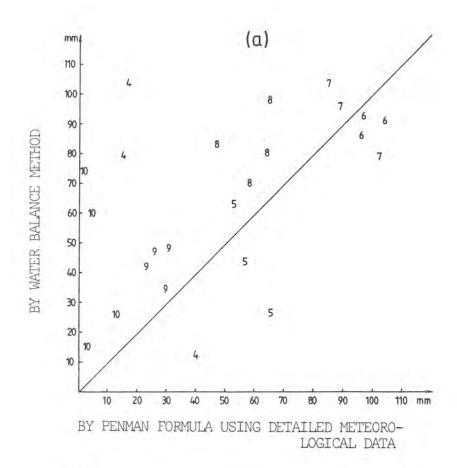

	Mean month in 1967 - 1974									
	Apr	May	Jun	Jul	Aug	Sep	Oct			
Interception by forest model (mm)	15	19	12	20	17	15	19			
Total evapotranspiration by model (mm) 53	81	97	93	81	54	39			
Interception in per cent of total value	28	23	12	22	21	28	49			


Figure 11 also compares the Penman formula (a) and the forest model (b) as regards the ability to simulate the water balance values. In both cases data from the synoptic station Fägre are used on a daily basis. The Penman estimates (table 9) were made by Eriksson (1981). The version used is a standard one intended to hold for a grass surface when water is not limiting. The comparison confirms what was said above and the suspicion by Eriksson in his paper that the Penman formula cannot give useful values for a forest.

The forest model is the more successful in simulating the water balance data as regards the average as well as the scatter. Especially for the summer months June, July and August the scatter is substantially smaller in figure 11 b.

One might expect the Penman formula to work better not using synoptic data as above but more detailed data from the Velen area itself. Very careful daily estimates were made by Häggström (1973) using humidity and wind data plus direct measurements of radiation at a site within the Velen basin (3 km from the micrometeorological site). The results are given in table 9 and for the months concerned figure 12 a shows the comparison with the water balance estimates. Figure 12 b shows that the forest model is still superior although synoptic data 20 km from the Velen area are used. Thus the scatter is smaller for the summer months in figure 12 b.

The values of Häggström seem to be low (due to low radiation input?) compared to the other Penman estimates, of figure 13.



BY FOREST MODEL USING ROUTINE WEATHER OBSERVATIONS

Figure 11

Monthly evapotranspiration values (mm) during 1967 - 1974. The numbers denote month (5 = May etc). The ordinates are values calculated by the water balance method from measurements in the Velen hydrological basin. The abscissae in diagram (a) have been calculated by the Penman formula using daily routine observations from the synoptic station Fägre 20 km from the Velen site. The abscissae in diagram (b) have been calculated for the same months by the forest evapotranspiration model with synoptic data from Fägre and parameter values derived from the 1974 data. The monthly points of 1974 are encircled.

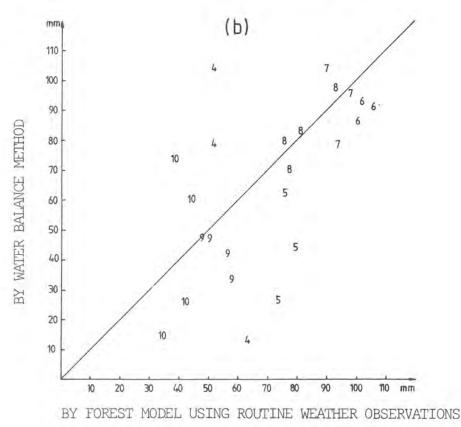


Figure 12

Monthly evapotranspiration values (mm) during 1968_71. The numbers denote month (5 = May etc). The ordinates are values calculated by the water balance method from measurements in the Velen hydrological basin. The abscissae in diagram (a) have been calculated by the Penman formula by Häggström (1973) using detailed daily data from Sjöängen 3 km from the Velen site (see table 1). The abscissae in diagram (b) have been calculated for the same months by the forest evapotranspiration model using daily routine observations from the synoptic station Fägre 20 km from the Velen site.

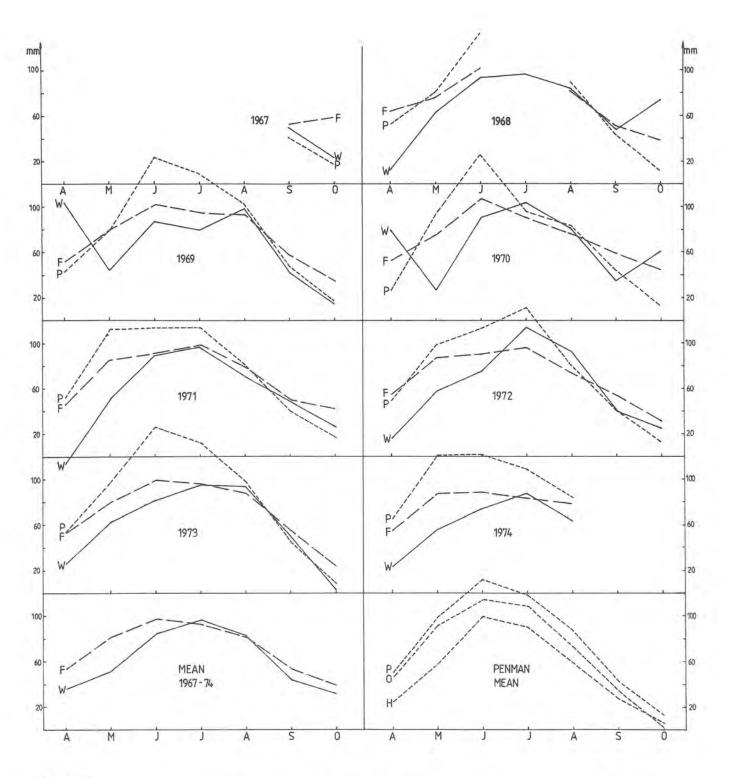


Figure 13

Monthly evapotranspiration values (mm). In the diagrams from 1967 - 1974, based on table 9, values from the forest evapotranspiration model (F) are compared to values from the water balance method (W) and values from the Penman formula (P). Of the bottom diagrams the left gives averages over 1967-74 of the F- and W-data. The right diagram gives averages over several years of results from the Penman formula. Legend:

W = water balance method using measurements in the Velen basin 1967-74. Waldenström (1977).
F = forest evapotranspiration model using synoptic data from Fägre 20 km from the Velen site, 1967-74.
P = Penman formula (grass) using synoptic data from Fägre 1967-74. Eriksson (1981).
O = Penman formula (grass) using synoptic data from örebro 75 km NE of the Velen area. Averages over 1931-60.
Wallen (1966).

H = Penman formula using detailed meteorological data from Sjöängen (in the Velen basin). Averages over 1968-71. Häggström (1973).

7. SUMMARY AND CONCLUSIONS

The following principles specific for forest evapotranspiration have been used to develop a practical model using routine synoptic data:

- Transpiration from the dry forest canopy and evaporation from the wet canopy occur at different rates and they have to be treated apart from each other.
- For a dry forest canopy the biological surface conductance $k_{\rm S}$ (or resistance $r_{\rm S}$ = $k_{\rm S}^{-1}$) regulates (or suppresses) the transpiration rate. Vapour concentration deficit is the forcing factor.
- The evaporation rate from a wet forest canopy is of the order of three times as large as from the dry canopy in the same weather conditions. Important are here vapour concentration deficit, aerodynamic resistance (coupled to wind speed), the water storage capacity of the canopy and the free throughfall coefficient.
- These two different evapotranspiration rates may be expressed by the Monteith equation with values of parameters specific for forest conditions.

The model presented is based on these principles plus experience and data from the Velen forest site in southern Sweden. These measurements were made during 1973 and 1974 in a 54 m high meteorological mast. There the evapotranspiration was evaluated hourly by the Bowen ratio - energy balance method and then summed into daily values. Interception was measured by 29 rain collecting troughs below and aside the forest canopy.

Practically the computer model works on a daily basis and needs the following synoptic data:

Air humidity, temperature and total cloud cover at 06, 12, 18 GMT. (Data at 03, 06, 09, 12, 15, 18 GMT are used if available.)

Rainfall amounts over 12 hour periods reported at 06 and 18 GMT.

The submodel for evaporation of rain water intercepted on the forest canopy assumes that, within each day, daytime rainfall occurs during a time interval centered at noon and of a length related to the rainfall amount.

Using values of the free throughfall coefficient and water storage capacity of the canopy the model calculates evaporated amounts during the periods before (dependent on nighttime rainfall) and after the daytime rainfall. Thereby, the water amount stored on the canopy is assumed to decrease exponentially with time at a rate dependent on the vapour concentration deficit. The evaporation during the daytime period of rainfall is calculated assuming a constant rate (mm/hr).

The daily transpiration sums are calculated from daily averages of vapour concentration deficit and global radiation flux. Then a physiologically based relationship was used, by which $k_{\rm S}$ was found to correlate remarkably well to the above variables, see Bringfelt (1982). For days with partially wet canopy this transpiration sum is reduced.

The daytime average of vapour concentration deficit is calculated directly from the synoptic data. The daily global radiation flux is calculated by a radiation model using hourly values of solar elevation (from latitude and time) and total cloud cover.

Literature information and the data from 1974 at the Velen site were used to adapt values of the model parameters.

The interception model was tested separately against the trough measurements. Then the model was tested on data from 1973, and the calculated intercepted amounts agreed very well with the measured data.

However, the transpiration level was found to be about 30 per cent higher in 1973 than in 1974 for corresponding values of vapour concentration deficit and global radiation. The reason may be the very dry spring of 1974, which could have reduced the activity of needles and leaves and the transpiration rate that summer, see Bringfelt (1982).

No covariation could be found with soil water data. Therefore, it was considered that the soil did not, during 1973 and 1974, become dry enough to reduce the transpiration rate. The model parameter values selected for the subsequent runs were those adapted to the 1974 data.

Finally the model was run using synoptic data from each of seven stations surrounding the Velen area. This gave monthly evapotranspiration values (April - October) during 1967-74. These values were compared to independent monthly data estimated from the hydrological water balance in the Velen area. Such a comparison can be seen in figures 11 b and 13, using data from the nearest synoptic station Fägre 20 km from the Velen site.

The agreement is seen to be very good for the summer months June, July, and August. The less good agreement in spring and autumn is partly explained by uncertainties in the water balance method. Another reason is probably that the real transpiration rate is not as intensive as in the summer months (for corresponding values of vapour concentration deficit and global radiation) while, in the model, the same intensity is implicit for all months studied.

Figures 11, 12 and 13 compare the ability of the new model with that of the Penman formula as regards simulation of monthly water balance estimates. As expected, the new model agrees much better than the Penman formula with the water balance estimates.

The potential evapotranspiration from a forest can be defined in two ways:

- Evaporation from the wet canopy.
- Transpiration from the dry canopy with no shortage of soil water.

None of these situations can be simulated properly by the wellknown Penman formula in its present form.

Nor can the formula be expected to give values useful for estimating real evapotranspiration from a forest area:

It does not regard the synoptic rainfall data. Thus no interception part has been estimated, which can lead to underestimates in spring and autumn, see figure 13.

Furthermore, the Penman formula has only been developed for low vegetation, so its ventilation term is too small. Also, the surface resistance has been put to zero to simulate a potential water loss. Therefore, in transpiration from a dry forest, both its numerator and denominator are too small by a large factor. This often leads to overestimates in summer, see figure 13, but the estimates may be accidentally of a reasonable order of magnitude. It is not surprising, if the scatter is large compared to estimates of real evapotranspiration, see figures 11 and 12.

The following steps are suggested for further model studies of forest evapotranspiration:

- Make the corresponding model calculations for other areas in Sweden, where independent water balance or meteorological (Bowen ratio) estimates of forest evapotranspiration exist. Then, as in this study, synoptic data for surrounding stations and relevant periods have to be used.

- For all these areas a careful study of both water balance and other evapotranspiration data and model predictions should be made. On the basis of this study the model should be improved as much as allowed by the quality and representativity of the data.
- If possible the model should be complemented by a routine allowing for shortage of soil water to reduce transpiration. This did not seem to occur in the Velen data studied above but may be important in other parts of Sweden.
- With or without these improvements model calculation may be made for several of the 190 synoptic stations where data are available on magnetic tape. With its present parameter values, the evapotranspiration from a Velen-type of forest covering all Sweden will be obtained. Since this forest is typical for large areas, the results would probably be useful.
- To make regard of the real forest types in the various parts of the country corresponding relevant values of the model parameters should be deduced and put into the model before execution.
 - The water storage capacity, free throughfall coefficient, and the transpiration formula may all be changed in order to consider a thinner forest than in Velen. Especially important and difficult is then the transpiration formula, since transpiration stands for a large part of the evapotranspiration (in the Velen material about 80 % for transpiration and 20 % for interception evaporation). The simplest way is to proportionalize from the Velen forest using leaf area index estimates. However, to get more adequate estimates over larger areas, more research is needed about transpiration rates of different forests.
- Finally the percentual forest coverage should be considered. This is rather straightforward for the interception part. The evapotranspiration from the non-forested areas may be estimated by some other method. For areas with large forest coverage this effect could probably be ignored as was the case in the present study in the Velen area.

Acknowledgements

The measurements and data processing were granted by the Swedish Natural Sience Research Council. This report is the final report of the project "Developments of methods to determine real evaporation from weather data" also granted by the Council.

Without the considerable efforts of several colleagues of the SMHI this work could not have been carried out. Thus, Sten Laurin has interpreted and made useful the humidity profile data from the meteorological mast. Hans Andersson has made the synoptic data available to the computer model. Bertil Eriksson, Arne Forsman, Todor Milanov and Torbjörn Jutman have given valuable comments and assistance. Roger Taesler and Cari Andersson have been helpful in incorporating the ned radiation model. Sten Bergström and Svante Bodin have given constructive comments to the manuscript, and the report was typed by Kerstin Fabiansen and Vera Kuylenstierna. Layout and drawing have been made by Yvonne Sahlberg, Gun-Britt Rosén and Anita Bergstrand.

Very constructive comments and assistance as regards the work on forest transpiration have been given by specialists of the Swedish University of Agricultural Sciences: Per-Erik Jansson, Thomas Lohammar and Kurth Perttu.

- Bringfelt, B., and Hårsmar, P.-O., 1974: Rainfall interception in a forest in the Velen hydrological representative basin. Nordic Hydrology, 5:146-165,
- Bringfelt, B., 1975: Mikrometeorologiska metoder att bestämma avdunstning. Vannet i Norden, 3:12-28.
- Bringfelt, B., Hårsmar, P.-O., Ljungkvist, S. and Laurin, S., 1977: Measurements of evaporation from forest (representative basin Velen). IHD-project No. 19 Final Report, SMHI, Norrköping, Sweden.
- Bringfelt, B., 1980: A comparison of forest evapotranspiration determined by some independent methods. SMHI Reports. Meteorology and Climatology. No. RMK 24.
- Bringfelt, B., 1982: Air humidity and radiation influence on forest transpiration. Agric. Met., 26, 297-307.
- Calder, I.R., 1977: A model of transpiration and interception loss from a spruce forest in Plynlimon, Central Wales. Journal of Hydrology, 33, 247-265.
- Calder, I.R., 1979: "Do trees use more water than grass?" Water Services, January 1979.
- Calder, I.R., and Newson, M.D., 1979: Land-use and upland water resources in Britain a strategic look. Water Resources Bulletin, American water resources association. Vol. 15, Np. 6.
- Eriksson, B., 1980: Statistical Analysis of Precipitation Data. Part II.
 Frequency Analysis of Monthly Precipitation Data. SMHI Rapporter Meteorologi och Klimatologi. No. RMK 17 (1980).
- Eriksson, B., 1981: The potential evapotranspiration in Sweden. SMHI Reports Hydrology and Oceanography RHO 27.
- Halldin, S., and Grip, H., 1979: Actual forest evapotranspiration by a simple model. Trans. Am. Geophys. Union, 60 (32), p. 580. (Report of the Swedish Coniferous forest project OLP 82:1979).
- Helvey, J.D., and Patric, J.H., 1965: Canopy and litter interception of rainfall by hardwoods of eastern United States. Water resources research. Vol. 1, No. 2.
- Häggström, M., 1973: Potentiell avdunstning i Velenområdet. SMHI, HBV Rapport nr 14, 1973-01-20.
- <u>Liljequist, G.H., 1979</u>: Meteorologi: Strålning. Meteorologiska Institutionen, Üppsala Universitet, Uppsala, Sweden.
- Lohammar, T., Larsson, S., Linder, S. and Falk, S.O., 1980: FAST simulation models of gaseous exchange in Scotch pines. In: T. Persson (Editor), Structure and Function on Northern coniferous forests An ecosystem study. Ecol. Bull. (Stockholm), 32:505-523.
- Monteith, J.L., 1965: Evaporation and environment, Symp. Soc. Exp. Biol., 19, 205-234.
- Monteith, J.L., (Editor), 1975: Vegetation and the Atmosphere, Vol. 1. Academic Press, London (p. 150).

- Pearce, A.J., Rowe, L.K., and Stewart, J.B. 1980: Nighttime, wet canopy evaporation rates and the water balance of an evergreen mixed forest. Water Res. Research, Vol. 16, No. 5, pp. 955-959.
- Penman, H.L., 1948: Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London, Ser. A, 193: 120-146.
- Rutter, A.J., Kershaw, K.A., Robins, P.C. and Morton, A.J., (1971/1972):

 A predictive model of rainfall interception in forests, I. Derivation of the model from observations in a plantation of Corsican pine. Agric. Met., 9, 367-384.
- Stewart, J.B., 1971: The albedo of a pine forst. Quart. J.R. Met. Soc., 97, pp 561-564.
- Stewart, J.B., and Thom, A.S., 1973: Energy budgets in pine forest. Q.J. Roy. Met. Soc. Vol. 99, pp 154-170.
- Stewart, J.B., 1977: Evaporation from the wet canopy of a pine forest. Water Resources Research, Vol. 13, No. 6, pp 915-921.
- Thom, A.S., and Oliver, H.R., 1977: On Penman's equation for estimating regional evaporation. Q.J.R. Meteorol. Soc. 103, pp 345-357.
- Thom, A.S. 1979: Evaporation from forests in relation to climate and hydrology. In Proceedings of Symposium on Forest Meteorology, Ottawa, August 21-25, 1978. WMO No. 527.
- Waldenström, A., 1977: Slutrapport över hydrologiska undersökningar i Velens representativa område. Hydrological Division. Rep. No. 28, SMHI, Norr-köping.
- Wallén, C.C., 1966: Global solar radiation and potential evapotranspiration in Sweden. Tellus. Vol. 18:4. Uppsala.

APPENDIX

Daily detailed data used for adapting and test of models of section 4. These data summarize the data from the Velen forest site in 1973 and 1974. Description according to the figures in the heading:

Daily input data to models:

- 1. Year and month.
- 2. Date.
- 3. Astronomical daylength in tenths of hours.
- 4. Rainfall A) from 1900 h the preceding day until 0700 h the present day.
- 5. Rainfall A) 0700 1900 h (hundreds of mm).
- 6. Water vapour pressure deficit in the ari measured at 16 m above ground. Daytime average in hundreds om mb.
- 9. Daytime global radiation sum measured above the forest canopy ($\mbox{Wh m}^{-2}$).
- 10. Daytime average air temperature (°C).

Daily verification data

7. Daytime evapotranspiration sum obtained from mast data above the forest canopy by the Bowen ratio-energy balance method (Wh m^{-2}).

Data not used:

- 8. Daytime net radiation sum measured above the forest canopy ($\mbox{Wh m}^{-2}$).
- -1 means missing data.
- A: Rainfall was measured in clearings by troughs and by a rainfall recorder. The 12-hourly values from the rainfall record have been increased here to correspond to the amounts given by the troughs over several days.

	1	2	3	4	5	6	7	8	9	10
ÉADD	,EP 83-P	RG .MAST	DATA							
1	7305	17	167	0	0	- 1	-1	-1	-1	-1
2	7305	13	168	0	132	-1	-1	-1	-1	-1
3	7305	19	169	66	132	-1	-1 -1	-1	-1 -1	-1 -1
5	7305 7305	20	169 170	0	0	-1 -1	-1	-1	-1	-1
6.	7305	22	171	650	0	-1	-1	-1	-1	-1
7	7305	23	171	0	0	-1	-1	-1	-1	-1
8	7305	24	172	0	G	-1	-1	-1	-1	-1
9	7305	25	172	112	C	-1	-1	-1	-1	-1.
10	7305	26	173	0	578	-1	-1	-1	-1	-1
11	7305	27	173	0	0	-1	-1	-1	-1	-1
12	7305	28	174	0	0	-1	-1	-1	-1 -1	-1 -1
13	7305	29 30	174 175	0	0	-1 -1	-1 -1	-1 -1	-1	-1
14	7305 7305	31	176	0	771	-1	-1	-1	-1	-1
16	7306	1	176	224	0	-1	-1	-1	-1	-1
17	7306	2	177	0	0	-1	-1	-1	-1	-1
18	7306	3	177	578	57	-1	-1	-1	-1	-1
19	7306	4	177	0	0	1	-1	-1	-1	-1
50	7306	5	178	0	0	-1	-1	-1	-1	-1
21	7306	6	178	0	0	-1	-1	-1	-1	-1
22	7306	7	178	0	0	-1	-1	-1 -1	-1 -1	-1
23	7306 7306	8	179 179	0	0	-1 -1	-1	-1	-1	-1
25	7306	10	179	588	56	-1	-1	-1	-1	-1
26	7306	11	180	0	0	-1	-1	-1	-1	-1
27	7306	12	180	0	56	-1	-1	-1	-1	-1
28	7306	13	180	0	C	-1	-1	-1	-1	-1
29	7306	14	181	0	0	-1	-1	-1	-1	-1
30	7306	15	181	0	0	-1	-1	6181	7885	-1
31	7306	16	181	0	C	-1	-1	6474	8294	-1
32	7306	17	181	0	0	-1	-1 -1	6330	8196 8054	-1 -1
33	7306 7306	18	181 181	0	0	-1	-1	6152	8064	-1
35	7306	20	181	0	0	-1	-1	6087	7958	-1
36	7306	21	181	C	0	-1	-1	6036	7877	-1
37	7306	22	181	0	0	-1	-1	6090	7949	-1
38	7306	23	181	0	0	-1	-1	6150	7956	-1
39	7306	24	181	0	0	-1	-1	5536	7185	-1
40	7306	25	181	0	0	-1	-1	5993	7671	-1
41	7306	26	181	0	250	-1	-1	4094	5347	-1
42	7306	27	181	113	56	-1 -1	-1 -1	3778 2166	4795 2850	-1 -1
43	7306 7306	28	181 180	112	0	-1	-1	3026	3816	-1
45	7306	30	180	0	0	-1	-1	5566	7260	-1
46	7307	1	180	0	0	-1	-1	5664	6943	-1
47	7307	2	180	0	0	-1	-1	5252	6733	-1
48	7307	3	179	0	0	-1	-1	5810	7445	-1
49	7307	4	179	0	0	-1		5513	7168	-1
50	7307	5	179	0	0	-1	-1	4973	6471	-1
51	7307	6	178	0	0	-1	-1	5443	7071	-1
52	7307	7	178	0	0	-1	-1	4101	5390	-1
53 54	7307 7307	8	178 177	817	613 715	-1	-1	3467 1124	4305	-1
55	7307	10	177	0	0	-1	-1	4900	-1	-1
56	7307	11	177	168	57	-1	-1	3300	3300	-1
57	7307	12	176	0	0	-1	-1	4250	4700	-1
58	7307	13	175	0	0	-1	-1	-1	-1	-1
59	7307	14	175	0	0	467	1609	3045	3761	19

	1	2	3	4 .	5	6	7	8	9	10
60	7307	15	174	- 0	0	1038	3229	5570	6986	.22
61	7307	16	174	0	0	660	2121	4020	4400	20
62	7307 7307	17 18	173	0	766 56	-1 -1	-1 -1	3049	3517 4767	-1 -1
64	7307	19	172	0	0	-1	-1	5142	6213	-1
65	7307	20	172	0.	0	720	2880	4157	4824	19
66	7307	21	171	0	507	392	2738	2991	3613	16
67	7307	22	170	0	56	525	2802	3197	3984	17
68	7307	23	170	0	0	719	3102	4626	5703	18
69	7307	24	169	507	609	341	2641	3166	3755	17
70	7307	25	168	56	4160	-9	-1	1600	1800	-1
71	7307	26	168	507	392	-1	-1	1916	2255	-1
72	7307	27	167	0	0	605	2432	2822	3642	5.5
73	7307	28	166	56	0	1066	3120	4402	5796	21
74	7307	29	166	0	0	1382	3498	5095	6793	5.5
75	7307	30	165	0	0	-1	-1	4456	5739	-1
76 77	7307	31	164	0	0	-1	-1	3073	3912	-1
78	7308	2	163	0	0	591 833	2668 3033	3710 4375	4466 5574	19
79	7308	3	162	0	0	960	2487	3305	4435	20
80	7308	4	162	0	1422	336	1764	2489	2907	19
81	7308	5	161	56	56	119	2158	1943	2203	13
82	7308	6	160	168	112	464	2069	2398	3022	18
83	7308	7	159	1116	0	583	3613	4005	5126	16
84	7308	8	158	862	558	83	2246	1788	2182	13
85	7308	9	157	0	0	707	3677	4948	6585	16
86	7308	10	157	558	56'	164	1794	1110	1323	15
87	7308	11	156	0	56	670	2389	4857	6052	18
88	7308	12	155	. 0	0	676	2556	3876	5024	18
89	7308	13	155	0	0	-1	-1		6219	-1
90	7308	14	154	0	0	-1	-1	4576	6423	-1
91	7308 7308	15	153 152	0	0	-1	-1	4460	6157	-1
93	7308	17	151	0	0	-1 -1	-1	4227	5907 5562	-1 -1
94	7308	18	150	1160	0	642	3193	4282	5679	17
95	7308	19	150	0	0	701	2398	4263	5597	17
96	7308	20	149	0	O	694	2485	4163	5605	15
97	7308	21	148	1146	0	-1	-1	4143	5665	-1
98	7308	22	147	0	0	-1		4227	5825	-1
99	7308	23	146	0	0	-1	-1	4078	5458	-1
100	7308	24	145	C	0	-1	-1	3591	4774	-9
101	7308	25	144	0	0			4238	5894	13
102	7308	26	144	0	0			4040	5482	16
103		27	143	0	0	-1		2999	3864	-1
104	7308	28	142	0	0	-1	-1	3074	4316	-1
105	7308 7308	29 30	141	0	0	-1		1721	2233	-1
107	7308	31	139	0	270	214	1081	2499	3070 1791	-1 13
108	7309	1	139	0	112	478	1774	3387	2 24 24 2	
109	7309	2	138	112	0	557	3200	3245	4376	15
1110	7309	3	137	0	0					
111	7309	4	136	0		-1	-1			-1
112	7309	5	135	0		326	993		1123	15
113	7309	6	134	0	0	717		3268	4594	15
114	7309	7	134	97	0	937	2106	3136	4247	16
115	7309	8	133	0	0	469	2169	3079	3773	16
116	7309	9	132	96	97		1471			15
117	7309	10	131	0	0		-1	3214	4581	-1
118	7309	11	130	0	0	-1	-1	2610	3826	-1
119	7309	12	129	0	0	-1		2737	4202	-1
120	7309	13	128	0	D	526	1508	2542	3516	11
121	7309 7309	14	127	80.	0	503	1320	2095	2731	11
123	7309	16	126	0	0	287 673	1143	1621	3202	14 .
124	7309	17	125	0	0	344	951		3030	15
125	7309	18	124	0	0		-1	2794		-1
				_	_					4

126		1	2	3	4	5	6	7	8	9	10
128 7300 21 122 10 0 -1 -1 -1 -1 -1 -1											
120											
130											
131											-1
133			24	119	56						
134											
135											
136											
138											-1
139											
140											
141							and the second second				
142											
144 7405 12 163 0 0 650 1829 4285 5977 11 145 7405 13 164 0 0 780 1693 5149 7425 11 146 7405 15 166 0 0 -1 -1 5002 6964 -1 147 7405 15 167 0 0 568 1400 2256 2779 11 149 7405 17 167 0 0 897 2490 4868 6875 16 150 7405 18 168 0 0 1180 2554 4894 4868 6875 16 151 7405 21 170 0 0 1285 2604 4935 6568 20 151 7405 23 171 0 0 1285 2409 4578 6168 16 153						0	1011		4707		
146					177						
146											
147 7405 15 166 0 0 -1 -5002 6964 -1 148 7405 16 167 0 0 568 1400 2256 2779 11 150 7405 18 168 0 0 1180 2554 4894 6884 19 151 7405 19 169 0 0 1285 2604 4935 6568 20 152 7405 20 169 0 0 986 2409 4578 6149 16 153 7405 20 169 0 0 986 2409 4578 6149 16 153 7405 21 170 0 0 -1 1486 1899 -1 153 7405 25 171 0 0 828 1984 4360 580 15 157 7405 26 173 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
148 7405 16 167 0 0 568 1400 2256 2779 11 149 7405 17 167 0 0 897 2490 4868 6875 16 150 7405 19 169 0 0 1180 2554 4894 6884 19 151 7405 19 169 0 0 1285 2604 4975 6568 20 152 7405 21 170 0 0 -1 -1 1448 1809 -1 153 7405 22 171 0 0 -1 -1 1448 1809 -1 155 7405 23 171 0 0 823 1848 4360 5830 15 157 7405 24 172 0 0 697 1715 5475 75761 13 157 7405 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
150							568			2779	11
151											
152					100						
153											
154						7					
155 7405 23 171 0 0 835 281 4867 6760 14 156 7405 24 172 0 0 828 1984 4360 5830 15 157 7405 25 172 0 0 697 1715 4397 5761 13 158 7405 26 173 0 266 538 1658 3745 4887 14 159 7405 27 173 112 56 539 2138 4054 4768 11 160 7405 29 174 517 413 142 2096 3058 3580 8 162 7405 30 175 224 56 302 2622 4208 6047 10 163 7405 30 175 224 56 392 2624 4208 6047 10 163 7406<											-1
157		7405			0						
158 7405 26 173 0 266 538 1658 3745 4287 14 159 7405 27 173 112 56 539 2138 4054 4763 11 160 7405 28 174 56 0 646 1631 5199 7283 11 161 7405 29 174 517 413 142 2096 3058 3580 8 162 7405 30 175 224 56 392 2652 4208 6047 10 163 7406 1 176 0 0 981 2064 423 6371 13 164 7406 1 176 0 0 981 2064 423 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 167 7406											
159 7405 27 173 112 56 539 2138 4054 4768 11 160 7405 28 174 56 0 646 1631 5199 7283 11 161 7405 30 175 224 56 392 2652 4208 6047 10 163 7405 31 176 56 0 749 1922 5223 7871 13 164 7406 1 176 0 0 981 2064 4223 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3925 5557 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406											
160 7405 28 174 56 0 646 1631 5199 7283 11 161 7405 29 174 517 413 142 2096 3058 3586 8 162 7405 30 175 224 56 392 2652 4208 6047 10 163 7405 31 176 56 0 749 1922 5223 7871 13 165 7406 1 176 0 0 981 2064 4423 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3935 575? 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406											
161 7405 29 174 517 413 142 2096 3058 3580 8 162 7405 30 175 224 56 392 2652 4208 6047 10 163 7405 31 176 56 0 749 1922 5223 7871 13 164 7406 1 176 0 0 981 2064 4423 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3975 5752 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 168 7406											
163 7405 31 176 56 0 749 1922 5223 7871 13 164 7406 1 176 0 0 981 2064 4423 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3935 5752 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3146 3903 -1 171 7406 9<											8
164 7406 1 176 0 0 981 2064 4423 6371 16 165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3935 5752 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3146 3903 -1 177 7406 2 179 0 24 -1 -1 3478 4855 -1 173 7406 10 <td></td>											
165 7406 2 177 0 56 870 1528 3173 4223 15 166 7406 3 177 373 0 571 2616 3935 5752 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3146 3903 -1 171 7406 2 179 0 224 -1 -1 2909 3679 -1 172 7406 10 179 0 0 -1 -1 -1 -1 -1 173 7406 12	Y .				57.51						
166 7406 3 177 373 0 571 2616 3935 5752 15 167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3146 3903 -1 171 7406 9 179 0 224 -1 -1 2999 3679 -1 172 7406 9 179 0 0 -1 -1 3478 4255 -1 173 7406 10 179 0 0 -1 -1 4889 6859 -1 175 7406 12											
167 7406 4 177 0 0 654 2118 5147 7762 14 168 7406 5 178 0 0 695 2064 5303 7761 14 169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3013 4009 -1 171 7406 2 179 0 224 -1 -1 2999 3679 -1 172 7406 9 179 0 0 -1 -1 -1 2999 3679 -1 173 7406 10 179 0 0 -1 -1 -1 -1 -1 173 7406 11 180 0 0 -1 -1 4899 6859 -1 176 7406 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>575?</td><td></td></td<>										575?	
169 7406 6 178 0 56 -1 -1 3013 4009 -1 170 7406 7 178 0 426 -1 -1 3146 3903 -1 171 7406 2 179 0 224 -1 -1 2999 3679 -1 172 7406 9 179 0 0 -1 -1 3478 4855 -1 173 7406 10 179 0 0 -1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2118</td> <td></td> <td></td> <td>14</td>								2118			14
170 7406 7 178 0 426 -1 -1 3146 3903 -1 171 7406 2 179 0 224 -1 -1 2999 3679 -1 172 7406 9 179 0 0 -1 -1 3478 4855 -1 173 7406 10 179 0 0 -1											
171 7406 2 179 0 224 -1 -1 2999 3679 -1 172 7406 9 179 0 0 -1 -1 3478 4855 -1 173 7406 10 179 0 0 -1 -1 -1 -1 -1 -1 174 7406 11 180 0 0 -1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
172 7406 9 179 0 0 -1 -1 3478 4855 -1 173 7406 10 179 0 0 -1											
173 7406 10 179 0 0 -1 -1 -1 -1 -1 -1 174 7406 11 180 56 373 -1 -1 -1 -1 -1 175 7406 12 180 0 0 -1 -1 4889 6859 -1 176 7406 13 180 0 0 -1 -1 4889 6859 -1 177 7406 14 181 0 0 -1 -1 4641 6753 -1 178 7406 15 181 0 0 -1 -1 4641 6753 -1 179 7406 16 181 0 0 -1 -1 4101 5892 -1 180 7406 16 181 0 0 -1 -1 4101 5892 -1 181 7406 17 181 0 0 -1 -1 -1 -1 -1 182 7406 18 181 0 0 -1 -1 -1 -1 -1 183 7406 20 181 </td <td></td>											
175 7406 12 180 0 0 -1 -1 4889 6859 -1 176 7406 13 180 0 0 -1 -1 4253 6245 -1 177 7406 14 181 0 0 -1 -1 4641 6753 -1 178 7406 15 181 0 0 -1 -1 4101 5892 -1 179 7406 16 181 0 0 -1 -1 4999 7155 -1 180 7406 16 181 0 0 -1 -1 -1 -1 -1 181 7406 16 181 0 0 -1 -1 -1 -1 -1 181 7406 18 181 0 0 -1 -1 -1 -1 -1 182 7406 19 181 250 1450 -1 -1 -1 -1 -1 183 7406 20 181 250 1450 -1 -1 -1 -1 -1 184 7406 21 181 2							-1			-1	
176 7406 13 180 0 0 -1 -1 4253 6245 -1 177 7406 14 181 0 0 -1 -1 4641 6753 -1 178 7406 15 181 0 0 -1 -1 4101 5892 -1 179 7406 16 181 0 0 -1 -1 4101 5892 -1 180 7406 16 181 0 0 -1 -1 4999 7155 -1 181 7406 18 181 0 0 -1 -1 -1 -1 -1 -1 182 7406 18 181 0 950 -1											
177 7406 14 181 0 0 -1 -1 4641 6753 -1 178 7406 15 181 0 0 -1 -1 4101 5892 -1 179 7406 16 181 0 0 -1 -1 4999 7155 -1 180 7406 17 181 0 0 -1											
178 7406 15 181 0 0 -1 -1 4101 5892 -1 179 7406 16 181 0 0 -1 -1 4999 7155 -1 180 7406 17 181 0 0 -1 -1 -1 -1 -1 -1 181 7406 18 181 0 0 -1 -1 -1 -1 -1 -1 -1 183 7406 19 161 0 950 -1											
179 7406 16 181 0 0 -1 -1 4999 7155 -1 180 7406 17 181 0 0 -1 -1 -1 -1 -1 181 7406 18 181 0 0 -1 -1 -1 -1 -1 182 7406 19 161 0 950 -1 -1 2483 3298 -1 183 7406 20 181 250 1450 -1 -1 -1 -1 -1 184 7406 21 181 250 1450 -1 -1 -1 -1 -1 185 7406 21 181 236 56 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 189 7406 26 181 0											
181 7406 18 181 0 0 -1 -1 -1 -1 -1 182 7406 19 161 0 950 -1 -1 2483 3298 -1 183 7406 20 181 250 1450 -1 -1 -1 -1 -1 -1 184 7406 21 131 56 950 -1 -1 -1 -1 -1 185 7406 22 181 236 56 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 -1 -1 -1						Č					
182 7406 19 181 0 950 -1 -1 2483 3298 -1 183 7406 20 181 250 1450 -1 -1 -1 -1 -1 -1 184 7406 21 181 56 950 -1 -1 -1 -1 -1 -1 185 7406 22 181 206 56 -1 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 -1 -1 -1			17		O						
183 7406 20 181 250 1450 -1 -1 -1 -1 -1 184 7406 21 181 56 950 -1 -1 -1 -1 -1 185 7406 22 181 206 56 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 -1 -1 -1											
184 7406 21 181 56 950 -1 -1 -1 -1 -1 185 7406 22 181 206 56 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 189 7406 26 181 0 1109 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 2747 4516 -1											
135 7406 22 181 236 56 -1 -1 -1 -1 -1 186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 189 7406 26 181 0 1109 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 2747 4516 -1											
186 7406 23 181 0 112 -1 -1 -1 -1 -1 187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 189 7406 26 181 0 1109 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 2747 4516 -1											
187 7406 24 181 0 0 -1 -1 -1 -1 -1 188 7406 25 181 0 0 -1 -1 -1 -1 -1 189 7406 26 181 0 1109 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 2747 4516 -1						112			-1	-1	
189 7406 26 181 0 1109 -1 -1 -1 -1 -1 190 7406 27 181 0 0 -1 -1 2747 4516 -1	187	7406	24	181							
190 7406 27 181 0 0 -1 -1 2747 4516 -1											

	1	2	3	4	5	6	7	8	9	10
192	7406	29	180	0	G-	-1	-1	2265	3004	-1
193	7406	30	130	0	0	-1	-1	4815	6711	-1
194	7407 7407	1 2	180	0	0 56	-1 -1	-1 -1	5059 5120	7366 6826	-1 -1
196	7407	3	179	308	0	-1	-1	-1	-1	-1
197	7407	4	179	168	56	-1	-1	-1	-1	-1
198	7407	5	179	0	0	-1	-1	-1	-1	-1
199	7407	6	178	493	0	-1	-1	-1	-1	-1
200	7407 7407	7	178 178	56	224	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1
202	7407	. 9	177	0	Ö	-1	-1	5686	7740	-1
203	7407	10	177	. C	0	-1	-1	4366	5925	1
204	7407	11	177	0	C	535	1400	3126	4632	18
205	7407	12	176	0	112	300	1669	2037	2765	10
206	7407	13	175 175	0	0 2336	508 -1	1682	3071	3823 1024	15 -1
208	7407	15	174	112	0	-1.	-1	2089	3854	-1
209	7407	16	174	C	0	-1	-1	1427	1986	-1
210	7407	17	173	348	232	-1	-1	2491	3721	-1
211	7407	18	173	0	0	435	1505	2314	3353	16
212	7407 7407	19	172 172	0	0	731	2160 1593	4459	6612 7303	19
214	7407	21	171	0	0	756	1719	4571	6719	17
215	7407	22	17C	0	Ü	377	857	1114	1400	15
216	7407	23	170	0	290	-1	-1	2016	3345	-1
217	7407	24	169	0	57	503	1706	3232	4117	14
218	7407	25 26	168 168	286	0 57	496 384	1719 1949	2692 2957	3711 3976	15 15
220	7407	27	167	1580	0	285	2317	2739	3302	13
221	74.07	2.8	166	0	0	636	2981	4859	6959	1.6
555	7407	29	166	C	0	628	2207	4576	6846	15
223	7407	30	165	C	C	661	1775	4953	7376	16
224	7407	31	164 163	0	0	-1 861	-1 2284	5188 4546	7175	-1 17
226	7408	2	163	Ö	70	267	1491	2208	2810	14
227	7408	3	162	Ō	Ö	719	2687	4847	6760	17
228	7408	4	162	C	0	786	2271	4349	7186	17
229	7408	5	161	. 0	0	939	1975	3973	6955	18
230	7408	6	.160 159	0	0	882	1781	4362	6752	16 16
232	7408	8	158	C	0	983	1597	4338	6683	17
233	7408	9	157	.0	0	846	1847	2320	3343	19
234	7408	10	157	0	2192	178	886	940	-1	15
235	7408	11	156	0	1793	189	1657	2031	-1	16
236	7408 7408	12	155 155	0	996	295 169	2743 1699	3645 1648	-1 -1	17
238	7408	14	154	112	56	-1	-1	2501	-1	-1
239	7408	15	153	112	224	-1	-1	748	-1	-1
240	7408	16	152	0	448	-1	-1	2038	-1	-1
241	7408	17	151	56	56	-1	-1	2319	-1	-1
242	7408	18	150 150	0	0	-1 -1	-1 -1	-1 -1	-1 -1	-1 -1
244	7408	20	149	0	0	999	2337	3767	- 5510	18
245	7408	21	148	0	. 0	884	1605	2910	3885	17
246	7408	22	147	0	0	708	1556	2553	3240	17
247	7408	23	146	0	. 0	505	1500	2458	3535	17
248	7408 7408	24	145	0	0	495	1343	1797 1875	2348	17
250	7408	26	144	0	0	911	1868	2686	3629	18
251	7408	27	143	0 -		862	803	2396	3395	21
252	7408	28	142	0	56	5.5	703	774	921	15
253	7408	29	141	0	0	639	2005	2851	4519	17
254	7408	30	140	0	0	403	1231	2091	2726	16
256	7408	31	139 139	0	. 0	-1 820	-1 1909	3286	4598	-1 21
257	7409	2	138	280	168	332	1867	2024	2778	17
									P. 713 W	

	1	2	3	4	5	6	7	8	9	10
258	7409	3	137	0	653	9	606	537	875	14
259	7409	4	136	0	0	312	1261	1439	2150	15
260	7409	5	135	56	913	39	998	677	874	12
261	7409	6	134	456	659	3	753	833	1108	13
262	7409	7	134	O	0	370	1885	2149	3370	16
263	7409	8	133	56	448	161	1095	1211	1503	13
264	7409	9	132	0	112	-1	-1	1906	2890	-1
265	7409	10	131	0	0	-1	-1	2262	2821	-1
266	7409	11	130	0	0	-1	-1	2106	2952	-1
267	7409	12	129	0	0	-1	-1	-1	-1	-1
268	7409	13	128	0	0	-1	-1	2066	2901	-1
269	7409	14	127	0	0	361	693	1166	1580	14
270	7409	15	127	0	0	240	362	467	621	13
271	7409	16	126	0	O	-1	-1	1489	2145	-1
272	7409	17	125	0	0	481	1208	1781	2440	17
273	7409	18	124	0	0	558	1814	2492	3874	13
274	7409	19	123	0	0	477	1922	2446	3321	13
275	7409	20	122	C	336	282	2185	2147	3196	11
276	7409	21	122	0	168	59	816	1066	1319	10
277	7409	22	121	448	1197	-1	-1	306	445	-1
278	7409	23	120	56	504	-1	-1	-1	1	-1
279	7409	24	119	56	392	-1	-1	-1	-1	-1
280	7409	25	118	280	56	170	1189	893	1230	1.1
281	7409	26	117	0	0	290	1423	1769	2789	11
282	7409	27	117	0	0	326	1292	1760	2676	11
283	7409	28	116	280	224	40	622	293	395	11
284	7409	29	115	0	336	178	356	475	827	10
285	7409	30	114	1137	599	-1	-1	825	1061	-1
286	7410	1	114	0	0	-1	-1	1218	5090	-1
287	7410	2	113	0	1257	-1	-1	483	707	-1
288	7410	3	112	337	56	-1	-1	447	577	-1
289	7410	4	111	56.	0	-1	-1	-1	-1	-1
290	7410	5	110	0	225	-1	-1	-1	-1	-1
291	7410	6	109	336	838	-1	-1	-1	-1	-1
292	7410	7	109	168	0	-1	-1	-1	-1	-1
293	7410	8	108	0	0	-1	-1	-1	-1	-1
294	7410	9	107	0	0	-1	-1	-1	-1	-1
295	7410	10	106	658	0	-1	-1	-1	-1	-1
296	7410	11	105	C	0	-1	-1	-1	-1	-1


ÉBRKPT PRINTS

SMHI Rapporter, METEOROLOGI OCH KLIMATOLOGI (RMK)

- Nr 1 Thompson, T, Udin, I and Omstedt, A Sea surface temperatures in waters surrounding Sweden. (1974)
- Nr 2 Bodin, S
 Development on an unsteady atmospheric boundary layer model. (1974)
- Nr 3 Moen, L A multi-level quasi-geostrophic model for short range weather predictions. (1975)
- Nr 4 Holmström, I Optimization of atmospheric models. (1976)
- Nr 5 Collins, W G,
 A parameterization model for calculation of vertical
 fluxes of momentum due to terrain induced gravity waves. (1976)
- Nr 6 Nyberg, A On transport of sulphur over the North Atlantic. (1976)
- Nr 7 Lundqvist, J-E and Udin, I Ice accretion on ships with special emphasis on Baltic conditions. (1977)
- Nr 8 Eriksson, B

 Den dagliga och årliga variationen av temperatur,
 fuktighet och vindhastighet vid några orter i Sverige. (1977)
- Nr 9 Holmström, I and Stokes, J Statistical forecasting of sea level changes in the Baltic. (1978)
- Nr 10 Omstedt, A and Sahlberg, J Some results from a joint Swedish-Finnish Sea Ice Experiment, March, 1977. (1978)
- Nr 11 Haag, T
 Byggnadsindustrins väderberoende, seminarieuppsats i
 företagsekonomi, B-nivå. (1978)
- Nr 12 Eriksson, B Vegetationsperioden i Sverige beräknad från temperaturobservationer. (1978)
- Nr 13 Bodin, S En numerisk prognosmodell för det atmosfäriska gränsskiktet grundad på den turbulenta energiekvationen.
- Nr 14 Eriksson, B Temperaturfluktuationer under senaste 100 åren. (1979)
- Nr 15 Udin, I och Mattisson, I Havsis- och snöinformation ur datorbearbetade satellitdata - en modellstudie. (1979)
- Nr 16 Eriksson, B Statistisk analys av nederbördsdata. Del I. Arealnederbörd(1979)
- Nr 17 Eriksson, B Statistisk analys av nederbördsdata. Del II. Frekvensanalys av månadsnederbörd. (1980)
- Nr 18 Eriksson, B Årsmedelvärden (1931-60) av nederbörd, avdunstning och avrinning. (1980)
- Nr 19 Omstedt, A A sensitivity analysis of steady, free floating ice. (1980)

- Nr 20 Persson, C och Omstedt, G En modell för beräkning av luftföroreningars spridning och deposition på mesoskala (1980)
- Nr 21 Jansson, D Studier av temperaturinversioner och vertikal vindskjuvning vid Sundsvall-Härnösands flygplats (1980)
- Nr 22 Sahlberg, J and Törnevik, H
 A study of large scale cooling in the Bay of Bothnia
 (1980)
- Nr 23 Ericson, K and Hårsmar, P-0 Boundary layer measurements at Klockrike. Oct 1977 (1980)
- Nr 24 Bringfelt, B A comparison of forest evapotranspiration determined by some independent methods (1980)
- Nr 25 Bodin, S and Fredriksson, U Uncertainty in wind forecasting for wind power networks (1980)
- Nr 26 Eriksson, B Graddagsstatistik för Sverige (1980)
- Nr 27 Eriksson, B Statistisk analys av nederbördsdata. Del III 200-åriga nederbördsserier. (1981)
- Nr 28 Eriksson, B
 Den "potentiella" evapotranspirationen i Sverige (1981)
- Nr 29 Pershagen, H Maximisnödjup i Sverige (perioden 1905-70) (1981)
- Nr 30 Lönnqvist, O Nederbördsstatistik med praktiska tillämpningar (Precipitation statistics with practical applications) (1981)
- Nr 31 Melgarejo, J W Similarity theory and resistance laws for the atmospheric boundary layer (1981)
- Nr 32 Liljas, E Analys av moln och nederbörd genom automatisk klassning av AVHRR data (1981)
- Nr 33 Ericson, K Atmospheric Boundary Layer Field Experiment in Sweden 1980, GOTEX II, part I (1982)
- Nr 34 Schoeffler, P
 Dissipation, dispersion and stability of numerical schemes
 for advection and diffusion (1982)
- Nr 35 Undén, P The Swedish Limited Area Model (LAM). Part A. Formulation (1982)
- Nr 36 Bringfelt, B A forest evapotranspiration model using synoptic data (1982)

