

ALGAL SITUATION IN MARINE WATERS SURROUNDING SWEDEN

Sammanfattning

Efter vårblomningen fanns det mest små celler kvar samt enstaka arter av dinoflagellater och kiselalger i både Kattegatt och Skagerrak. Flertalet arter och släkten av potentiellt giftiga växtplankton fanns längs hela västkusten i april. Klorofyllvärdena vid samtliga stationer var normala för månaden.

I den östra delen av Östersjön var vårblomningen i gång Även vid den södra stationen BY5 Bornholmsdjupet återfanns en liten vårblomningstopp. Vid den västliga stationen, BY38 Karlsödjupet, återfanns även höga cellantal. Samtliga stationer med höga cellantal dominerades av dinoflagellaten *Peridinella catenata*. Den filamentösa cyanobakterien *Aphanizomenon flosaquae* återfanns vid ett par stationer. Det integrerade klorofyllvärdena (0-10 m) var över det normala endast vid BY15 Gotlandsdjupet Vid övriga östliga stationerna var de integrerade klorofyllvärdena (0-10 m) höga men inom det normala för månaden. Vid de västliga stationerna var de låga efter förra månadens vårblomning.

Abstract

After the spring bloom there were mostly small cells left and a few dinoflagellates and diatoms in both Kattegat and Skagerrak areas. Several species and genera of potentially toxic phytoplankton were present along the whole west coast in April. Chlorophyll concentrations at all stations were normal for this month.

In the eastern part of the Baltic spring bloom was recorded. Station BY5 in the south also presented a small spring bloom. High cell numbers were found at BY38, between southern Gotland and northern Öland. All stations with high cell numbers had a dominance of the dinoflagellate *Peridinella catenata*. The filamentous cyanobacterium *Aphanizomenon flosaquae* was present at a couple of stations in low numbers. The integrated chlorophyll concentration (0-10 m) was above normal at BY15 Gotland deep. The rest of the eastern stations had high integrated chlorophyll values (0-10 m) but within normal for the month. At the westerly stations the chlorophyll concentrations were low due to the spring bloom the month before.

Below follows a more detailed information on species composition and abundance. Species marked with * are potentially toxic or harmful.

The Skagerrak

Å17 (open Skagerrak) 13th of April

Both phytoplankton diversity and abundance were low, and the community consisted mainly of small cells such as Cryptomonadales, *Pyramimonas* sp. and flagellates. There were also some *Heterocapsa rotundata*, Gymnodiniales, *Pseudopediniella* sp. and *Telonema* sp. Just a few large dinoflagellates were present and a few cells of the toxic diatom genus *Pseudo-nitzschia* sp*. The potentially harmful dinoflagellate *Karlodinium veneficum** was present. Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were within normal for this month.

Släggö (Skagerrak coast) 13th of April

Both phytoplankton diversity and abundance were relatively high, but the community consisted mainly of small cells such as *Heterocapsa rotundata*, Cryptomonadales, *Pseudopediniella* sp. and ciliates. The diatom *Skeletonema marinoi* was abundant. A few large dinoflagellates and diatoms were present, as well as some potentially toxic species such as the dinoflagellates *Dinophysis acuminata**, *D. norvegica**, *Alexandrium* sp.* and *Karlodinium veneficum** and the diatom *Pseudo-nitzschia* sp.* Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were within normal for this month.

Figure 1. Small cells such as Cryptomonadales, *Pseudopediniella* sp. and *Heterocapsa rotundata* were numerous along the Swedish west coast in April. Photo: Maria Karlberg.

The Kattegat

Anholt E 14th and 19th of April

Both phytoplankton diversity and abundance were relatively normal. The community consisted of small cells such as Cryptomonadales, *Pseudopediniella* sp., *Heterocapsa rotundata* and flagellates, as well as a few *Skeletonema marinoi*, Gymnodiniales, *Peridiniella danica*. The potentially toxic species *Dinophysis acuminata**, *D. norvegica** and *Karlodinium veneficum** were present. The two sampling occasions at Anholt E were quite similar, there were however some differences: on the first occasion there were some more species of diatoms present and on the second occasion there were some more dinoflagellates. On the second sampling occasion there were also fewer cells of the small community and some more ciliates. Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were low but within normal for this month.

N14 Falkenberg 14th of April

Both phytoplankton diversity and abundance were relatively high. The community consisted of small cells such as Cryptomonadales, *Pseudopediniella* sp., *Peridiniella danica* and flagellates, as well as larger species of dinoflagellates and diatoms; *Guinardia delicatula*, *Rhizosolenia setigera*, a few *Skeletonema marinoi*, Gymnodiniales, and *Gyrodinium* spp. The potentially toxic species *Dinophysis acuminata**, *D. norvegica**, *Karlodinium veneficum** and *Protoceratium reticulatum** were present. Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were normal for this month.

The Baltic

BY2 15th of April

Phytoplankton diversity and total cell concentrations were low. Mainly small flagellates were present. Most common were the small dinoflagellate *Heterocapsa rotundata*, several cryptomonadales species and the genus *Dinobryon*. Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were within normal for this month.

BY5 195h of April

Phytoplankton diversity and total cell concentration were both relatively high. The dinoflagellate *Peridiniella catenata* dominated among the larger cells. The small cells were dominated by the genus *Dinobryon* and the cryptomonadales group. The ciliate *Mesodinium rubrum* was common. Both the integrated 0-20 m and 0-10 m chlorophyll concentrations were within normal for this month.

BCSIII-10 16th of April

The phytoplankton diversity was moderate whereas the total cell concentration was relatively high. The dinoflagellate *Peridiniella catenata* dominated. Also, the ciliate *Mesodinium rubrum* was present in high cell numbers. Among the small cells, cryptomonadales species were common and some colony forming cyanobacteria were present. Both the integrated (0-20 m) and (0-10 m) chlorophyll concentrations were within normal for this month.

Figure 2. A spring bloom dominated by the diatom *Peridiniella catenata* was present in the eastern part of the Baltic. Photo: Ann-Turi Skjevik.

Figure 3. The small dinoflagellate Heterocapsa rotundata was common at several stations. Photo: Ann-Turi Skjevik.

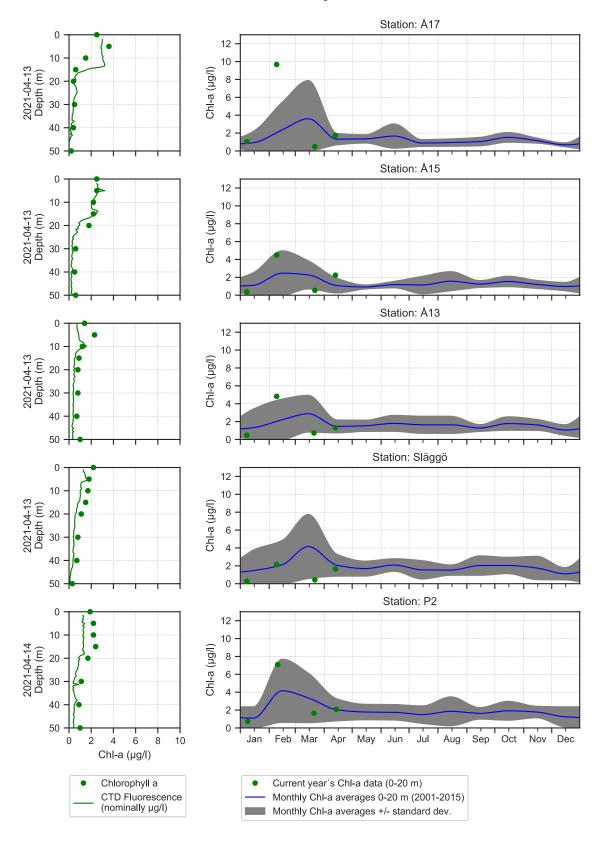
BY15 16th of April

The phytoplankton diversity was moderate and total abundance was relatively high. The dinoflagellate *Peridiniella catenata* dominated in cell numbers. The ciliate *Mesodinium rubrum* was common. Among the small cells Cryptomonadales and *Heterocapsa rotundata* were common. A few filaments of the cyanobacterium *Aphanizomenon flosaquae* were present. The integrated (0-10 m) chlorophyll concentration was far above normal for the month whereas the deeper integrated concentration (0-20 m) was in the higher region of what is normal for the month.

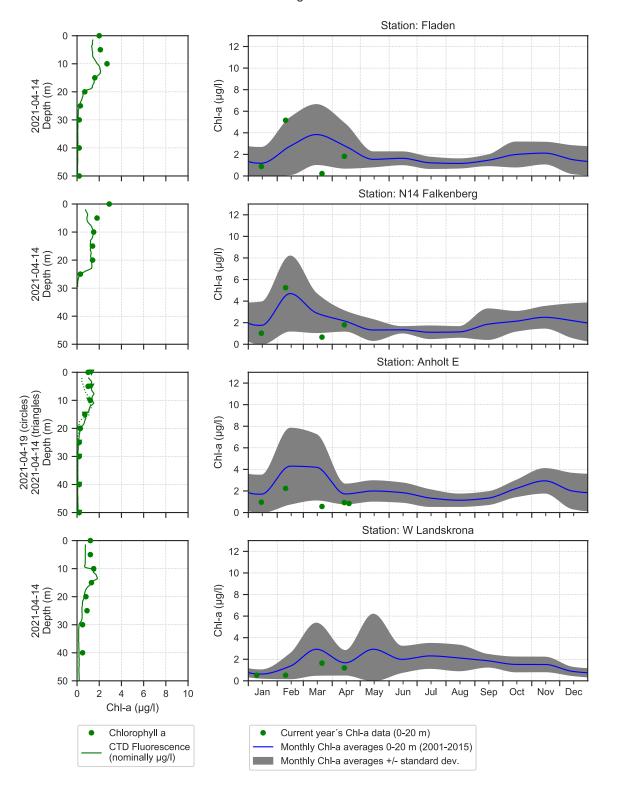
BY38 17th of April

Phytoplankton diversity was moderate and total abundance was relatively high. The dinoflagellate *Peridiniella catenata* was found in high cell numbers. Among the small cells Cryptomonadales and *Heterocapsa rotundata* were common. The genus *Dinobryon* was present. Both the integrated chlorophyll concentrations, 0-10 and 10-20 m, were within normal for this month.

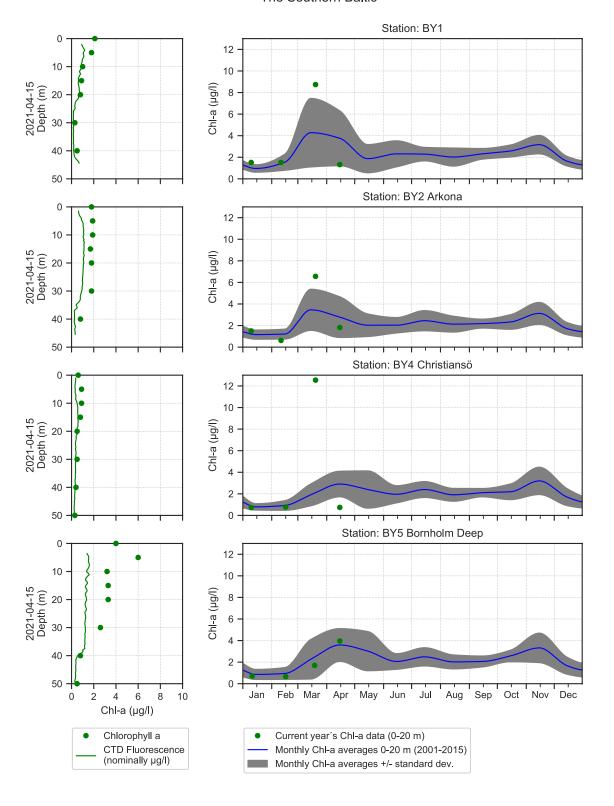
REFM1V1 18th of April

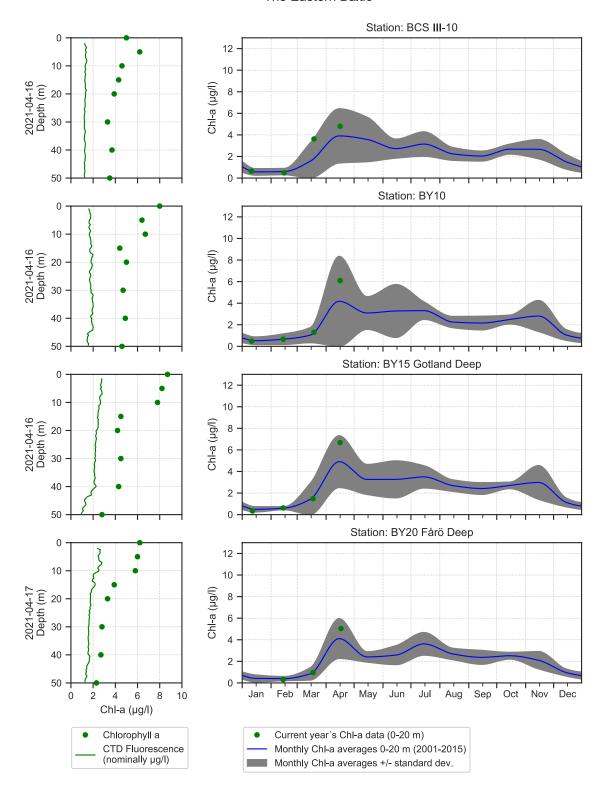

The phytoplankton diversity was quite low whereas the total abundance was moderate. The diatom *Skeletonema marinoi* was found in highest cell numbers among the large cells. Various small cryptomonadales were numerous. The dinoflagellate *Heterocapsa rotundata* was common. Both the integrated chlorophyll concentrations, 0-10 and 10-20 m, were within normal for this month.

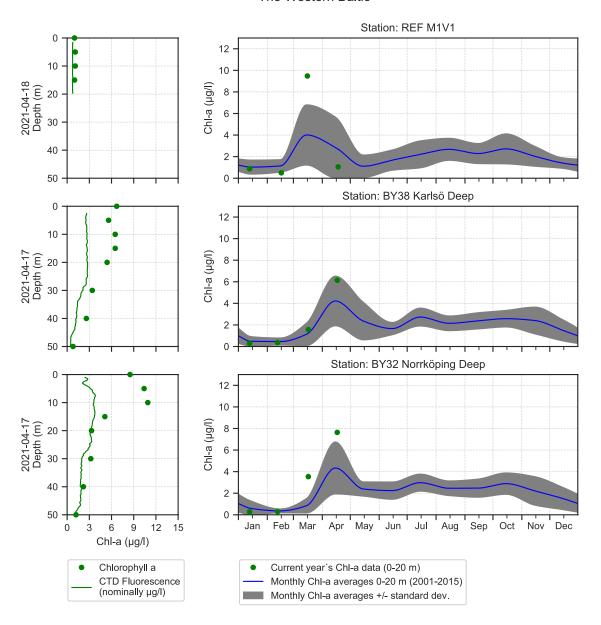
Phytoplankton analysis and text: Marie Johansen and Maria Karlberg.


Selection of observed species	Anholt E	Anholt E	N14	Släggö	Å17
Red=potentially toxic species	14/4	19/4	14/4	13/4	13/4
Hose 0-10 m	presence	presence	presence	presence	presence
Centrales				present	
Chaetoceros debilis				present	
Coscinodiscus radiatus	present				
Cylindrotheca closterium	· ·			common	present
Guinardia delicatula			present		process
Licmophora			present	present	
Proboscia alata	present		present	present	
Pseudo-nitzschia	present		present	procent	procent
			nrocont	present	present
Rhizosolenia setigera			present		
Skeletonema marinoi	present	present	common	very common	
Thalassionema nitzschioides			present	present	
Thalassiosira				present	
Alexandrium				present	
Amphidinium crassum	present				
Dinophysis acuminata		present	present	present	
Dinophysis norvegica	present	present	present	present	
Gymnodiniales	common	common	common	common	common
Gymnodinium verruculosum	present	present			present
Gyrodinium		present			
Gyrodinium flagellare			present		
Gyrodinium spirale			present	present	
Heterocapsa rotundata	very common	very common	very common	very common	common
cf. Karlodinium veneficum	present	present	present	present	present
Katodinium glaucum	present				
Peridiniales			present	present	
Peridiniella danica	common	present	common	common	present
Protoceratium reticulatum			present		
Protoperidinium		present			
Protoperidinium bipes		present			
Protoperidinium depressum		present	present		
Torodinium robustum				present	
Tripos lineatus				present	
Tripos longipes			present		present
Tripos muelleri	present	present		present	present
Dinobryon	present	present			
Ollicola vangoorii	present		present		
Emiliania huxleyi				present	
Pyramimonas	common	common	common	common	very common
Cryptomonadales	very common				
Leucocryptos marina	common	present	common	common	present
Telonema	present		present	present	common
Octactis speculum				present	
Pseudopedinella	very common	common	very common	very common	common
			present		
Ciliophora	present	common	present	very common	present
Mesodinium rubrum				present	
Laboea strobila		present	present	common	
Tintinnopsis beroidea				present	
Eutreptiella				common	present
Flagellates	common	very common	very common	common	very common
Unicell	common	common	common	common	common

Selection of observed species	BCSIII-10	BY2	BY5	BY15	BY38	REFM1V1
Red=potentially toxic species	16/4	15/4	15/4	16/4	17/4	18/4
Hose 0-10 m	presence	presence	presence	presence	presence	presence
Centrales	present					
Chaetoceros similis		present	present			
Chaetoceros subtilis						present
Pleurosigma						present
Skeletonema marinoi		present	present			very common
Thalassiosira	present			present	present	
Thalassiosira baltica			present		present	
Amphidinium	present		present			
Amylax triacantha			present			
Dinophysis acuminata		present	present	present	present	
Gymnodiniales	common	common	common	common	common	common
Gyrodinium spirale	present					
Heterocapsa cf. arctica		present				
Heterocapsa rotundata	present	common	present	present	common	common
Katodinium glaucum		present	present		present	
Peridiniales			common	present	present	present
Peridiniella catenata	very common	present	very common	very common	very common	present
Phalacroma rotundatum				present		
Protoperidinium	present					
Dinobryon	common	common	common	present	present	present
Dinobryon balticum		common	present		present	
Prymnesiales		present	present			
Binuclearia lauterbornii	present	present		present		
Pyramimonas		common	present			
Cryptomonadales	common	common	common	common	present	common
Pseudopedinella pyriformis			present		present	
Eutreptiella		present				
Aphanizomenon flosaquae			present	present		
Aphanocapsa	present					present
Snowella	present		present	present		
Ciliophora	present	present	common	present	present	common
Mesodinium rubrum	common	common	common	common	present	common


The Skagerrak


The Kattegat and The Sound


The Southern Baltic

The Eastern Baltic

The Western Baltic

Om klorofylldiagrammen

Klorofyll *a* är ett mått på mängden växtplankton. Prover tas från ett antal djup. Data presenteras både från de fasta djupen och som medelvärden 0-20 m. Utöver resultaten från laboratorieanalyserna av vattenprover mäts klorofyll *a* som fluorescens från ett automatiskt instrument som sänks ned från fartyget. På så sätt kan djupt liggande, ibland tunna lager av växtplankton observeras.

About the chlorophyll graphs

Chlorophyll a is sampled from several depths. Data are presented both from the discrete depths and as an average 0-20 m. In addition to the laboratory analysis from the water samples chlorophyll fluorescence is measured in continuous depth profiles from the ship. This is a way to observe thin layers of phytoplankton occurring below the surface.

Om AlgAware

SMHI genomför månatliga expeditioner i Östersjön och Västerhavet. Resultat baserade på semikvantitativ mikroskopanalys av planktonprover samt klorofyllmätningar presenteras kortfattat i denna rapport. Information från SMHIs satellitövervakning av algblomningar finns under perioden juni-augusti på www.smhi.se. Resultat från provtagningarna kan hämtas från SMHI:s databas på sharkweb.smhi.se. Hydrografidata läggs ut varje månad, växtplanktondata läggs ut en gång per år.

About AlgAware

SMHI carries out monthly cruises in the Baltic and the Kattegat/Skagerrak. Results from semi quantitative microscopic analysis of phytoplankton samples as well as chlorophyll measurements are presented in brief in this report. Information from SMHIs satellite monitoring of algal blooms is found on www.smhi.se during the period June-August. Results from the expeditions are found in the SMHI database, sharkweb.smhi.se. Data are published monthly, phytoplankton data however, are published once a year.

Art / Species	Gift / Toxin	Eventuella symptom Milda symptom:	Clinical symptoms Mild case:		
Alexandrium spp.	Paralytic	Inom 30 min.:	Within 30 min:		
	shellfish				
	poisoning	Stickningar eller en känsla av	tingling sensation or numbness around		
	(PSP)	bedövning runt läpparna, som	lips, gradually spreading to face and neck;		
		sprids gradvis till ansiktet och	prickly sensation in fingertips and toes;		
		nacken; stickningar i fingertoppar	headake, dizziness, nausea, vomiting,		
		och tår;	diarrhoea.		
		Huvudvärk; yrsel, illamående,	Extreme case		
		kräkningar, diarré	Muscular paralysis; pronounced respiratory		
		Extrema symptom:	difficulty; choking sensation; death trough		
		Muskelförlamning;	respiratory paralysis may occur within 2-24		
		andningssvårigheter; känsla av att	hours after ingestion.		
		kvävas;			
		Man kan vara död inom 2-24			
		timmar efter att ha fått i sig giftet, på			
		grund av att andningsmuskulaturen			
		förlamas.			
Dinophysis spp.	Diarrehetic	Milda symptom:	Mild case:		
	shellfish	Efter cirka 30 minuter till några	Within 30 min-a few hours:		
	poisoning	timmar:	dizziness, nausea, vomiting, diarrhoea,		
	(DSP)	yrsel, illamående, kräkningar, diarré,	abdominal pain.		
		magont	Extreme case:		
		Extrema symptom:	Repeated exposure may cause cancer.		
		Upprepad exponering kan orsaka			
		cancer			
Pseudo- niztschia spp.	Amnesic	Milda symptom:	Mild case:		
Tribution of the	shellfish	Efter 3-5 timmar:	Within 3-5 hours: dizziness, nausea,		
	poisoning	yrsel, illamående, kräkningar, diarré,	vomiting, diarrhoea, abdominal cramps.		
	(ASP)	magkramper	Extreme case:		
	(1101)	Extrema symptom:	dizziness, hallucinations, confusion, loss of		
		Yrsel, hallucinationer, förvirring,	memory, cramps.		
			, ,		
Chaetoceros	Mechanical	förlust av korttidsminnet, kramper Låg celltäthet:	Low cell numbers:		
concavicornis/	damage	Ingen påverkan.	No effect on fish.		
C.convolutus	through	Hög celltäthet:	High cell numbers:		
	hooks on	Fiskens gälar skadas, fisken dör.	Fish death due to gill damage.		
D 11"	setae	T ° 114 *41	Low cell numbers:		
Pseudochattonella spp.	Fish toxin	Låg celltäthet:			
		Ingen påverkan.	No effect on fish.		
		Hög celltäthet:	High cell numbers:		
		Fiskens gälar skadas, fisken dör.	Fish death due to gill damage.		
Ö	11. 1	 - 11:	C 1 . C		

Översikt över några potentiellt skadliga alger och det aktuella giftets effekt. Overview of potentially harmful algae and effects of toxins. Manual on harmful marine microalgae (2003 - UNESCO Publishing).

Kartan på framsidan visar viktat medelvärde för klorofyll a, μ g/l (0-10 m) vid de olika stationerna. Pil upp eller ned indikerar om resultatet är över eller under en standardavvikelse från medel. Medel är beräknat utifrån aktuell månad under perioden 2001-2015. Förekomst av skadliga alger vid stationer där arter analyseras markeras med symbol.

The map on the front page shows weighted mean of chlorophyll a, μ g/l (0-10 m) at sampling stations. The arrow up or down indicate whether the result is above or below one standard deviation from mean. The mean value is calculated using results from the actual month during the period 2001-2015. Presence of harmful algae at stations where species analysis is performed is shown with a symbol.

Havs och Vatten myndigheten