
Sammanfattning

Planktonsamhället i Skagerrak och Kattegatt innehöll höga koncentrationer av coccolithophoriden Emiliana huxleyi. Vid Skagerraks yttre station, Å17, dominerade *Emiliana huxleyi* helt. Vid de andra planktonstationerna var dominansen inte lika tydlig även om *Emiliana huxleyi* återfanns i höga tätheter men nu tillsammans med andra små flagellater.

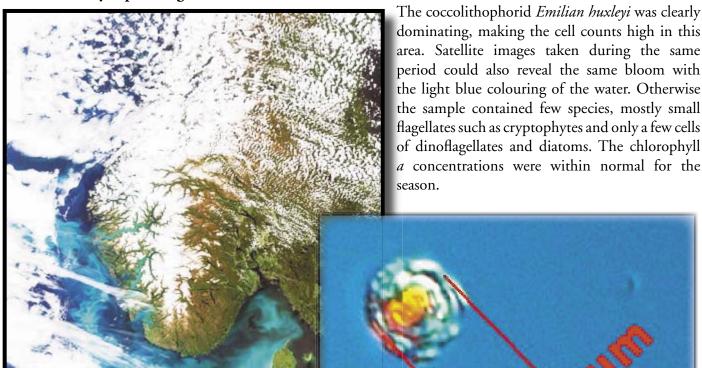
Klorofyll a koncentrationerna var inom det normala för säsongen och uppvisade relativt låga värden för hela området.

I Östersjön dominerades samhället av små flagellater vid de flesta stationer. Guldalgsläktet *Dinobryon* var vanligt vid Gotlandsbassängen (BY38) samt Kalmar sund (Ref. M1-V1) som även innehöll relativt hög abundans av kiselalgen *Skeletonema costatum* complex.

De integrerade (0-20 m) klorofyll a koncentrationerna var relativt låga i hela området vilket är normalt för säsongen.

Abstract

The phytoplankton community in both Skagerrak and Kattegat contained high abundances of the coccolithophorid *Emiliana huxleyi*. The outer station in Skagerrak, Å17, was totally dominated by *Emiliana huxleyi*. The dominance was less profound at the other stations even if it was still found in substantial amounts but together with other small flagellates.


The integrated (0-20 m) chlorophyll *a* concentrations were within normal for the season resulting in relatively low concentrations at all stations.

In the Baltic Sea small flagellates dominated the samples at most stations. The Chrysophyte genus *Dinobryon* was quite common at the Gotland deep and in Kalmar sound where the diatom *Skelatonema costatum* complex was also found in relatively high abundances.

The integrated chlorophyll a concentrations were rather low in the whole area, which is normal for the season.

The Skagerrak

Å17 31th of May (open Skagerrak)

A satellite image from ESA_4th of june showing the extensive coccolithophorid bloom.

Släggö 31th of May (Skagerrak coast)

The species diversity was much higher at this station compared to the previous. *Emiliana huxleyi* was found, but in much lower concentrations than at Å17. Cryptophytes were more common here with different species of the genus *Teleaulax*

The small species *Emiliania huxleyi* causes the beautiful turqoise waters in the Skagerrak and the North Sea. Photo: A-T Skjevik.

present. *Leucocryptus marina*, belonging to the *insertae sedis* taxa, was also found in quite high amounts. Several species of dinoflagellates were found but each species in low concentrations. The chlorophyll *a* concentrations were within normal for the season.

The Kattegat

N14 Falkenberg 1st of June

The species composition was quite high. Cryptophytes and the coccolithphorid *Emiliana huxleyi* were abundant at this station as they were in the Skagerrak samples. The diatoms *Dactyliosolen fragilissimus* and *Skeletonema costatum* complex were also quite abundant.

Anholt E 1st and 5th of June

The species diversity was quite high. The coccolithophorid, *Emiliana huxley*, was the most abundant on the first sampling occasion. The diatoms *Dacytliosolen fragilissimus* and *Skeletonema costatum* complex were also quite abundant. Small flagellates belonging to the cryptophytes were common and especially *Plagioselmis prolonga*. Some cells of the prymnesiophyte genus *Chrysochromulina* were also found. The chlorphyll *a* concentrations were within normal for the season.

The Baltic Sea

Arkona Basin BY2 1st of June

The species diversity was relatively high but only a few cells of each species were found making the total cell count quite low. Small flagellates such as different species of the genus *Chrysochromulina* and various cryptophytes dominated the sample. The dinoflagellate *Heterocapsa rotundata* was quite common.

South East Baltic BCS III-10 2nd of June

Only a few species were found and quite low cell numbers were recorded. The prasinophyte genus *Pyramimonas* was found with the highest concentrations. Quite high abundances of different ciliates were observed. The chlorophyll *a* concentrations were within normal for the season.

Eastern Gotland Basin BY15 3rd of June

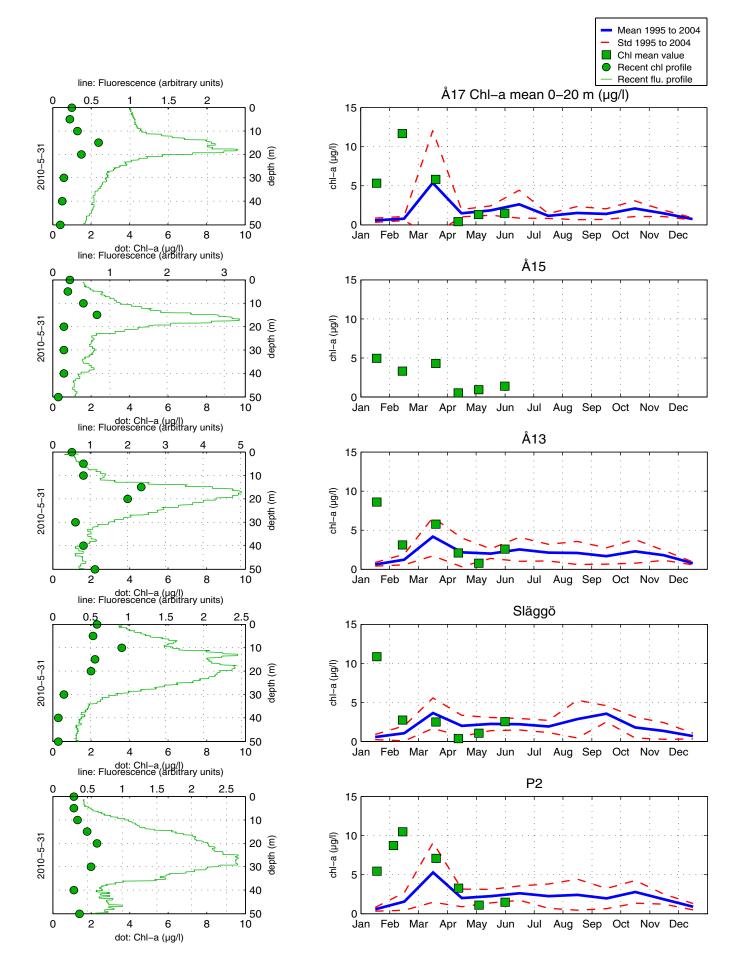

The prasinophyte genus *Pterosperma* was found in relatively high cell numbers at this sampling site as well as different ciliate species and some cryptophytes. The total cell count was quite low. The chlorophyll *a* concentrations were within normal for the season.

Western Gotland Basin BY 38 4th of June

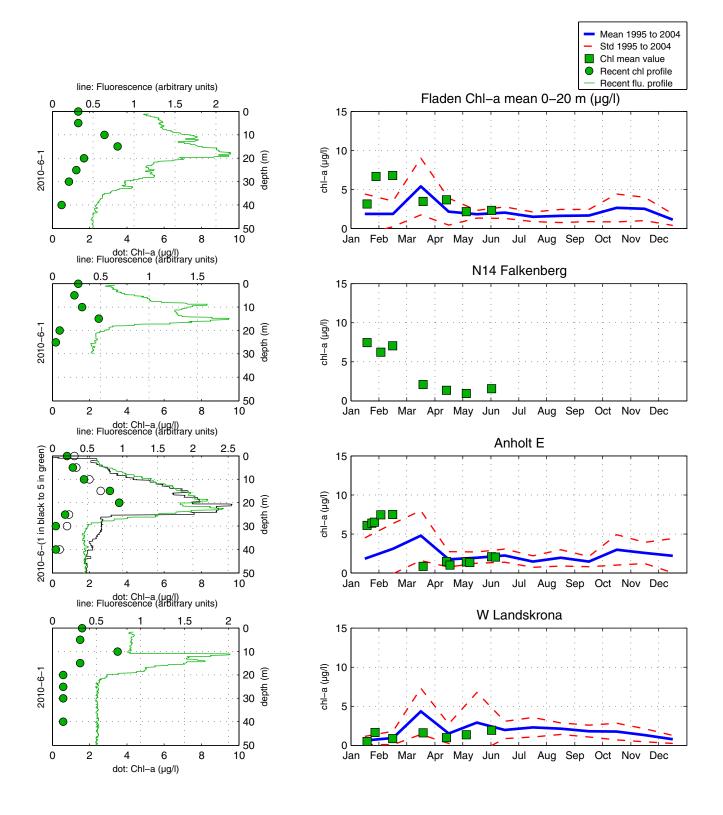
The species diversity was quite high at this sampling site. The sample was dominated by different species of the chrysophyte genus *Dinobryon* followed by different species of the genus *Chrysochromulina*. Low abundance of the cyanophyte genus *Aphanizomenon* was also recorded. The chlorophyll *a* concentrations were within normal for the season.

Kalmar Sound Ref. M1-V1 4th of June

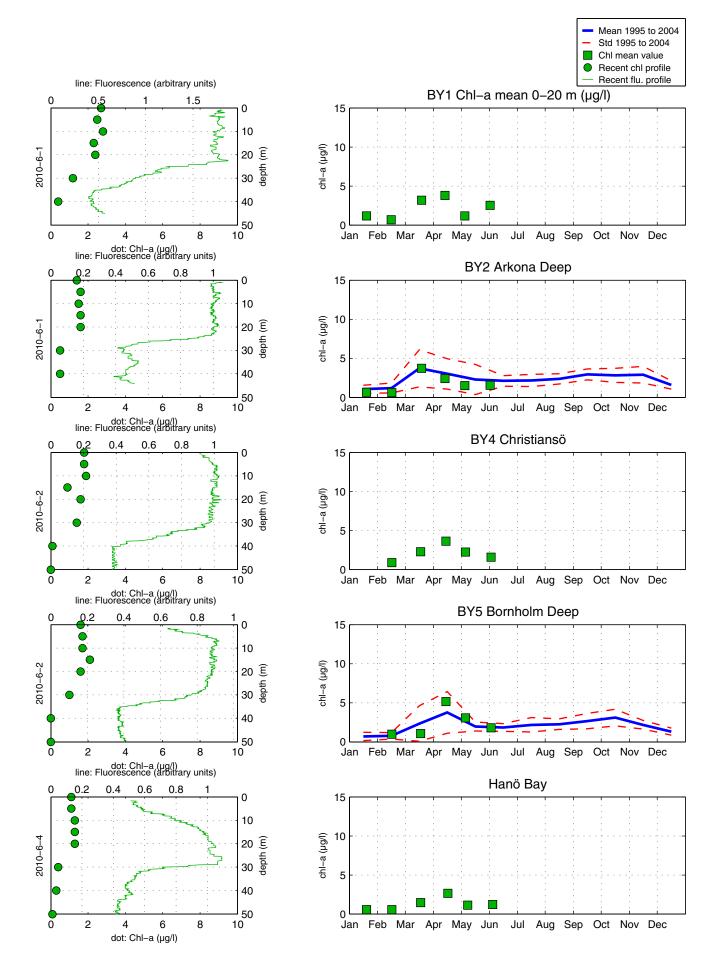
The species diversity was quite low. The diatom *Skeletonema costatum* complex was found in highest abundance at this sampling site. The genus *Dinobryon* was also found in quite high cell numbers.

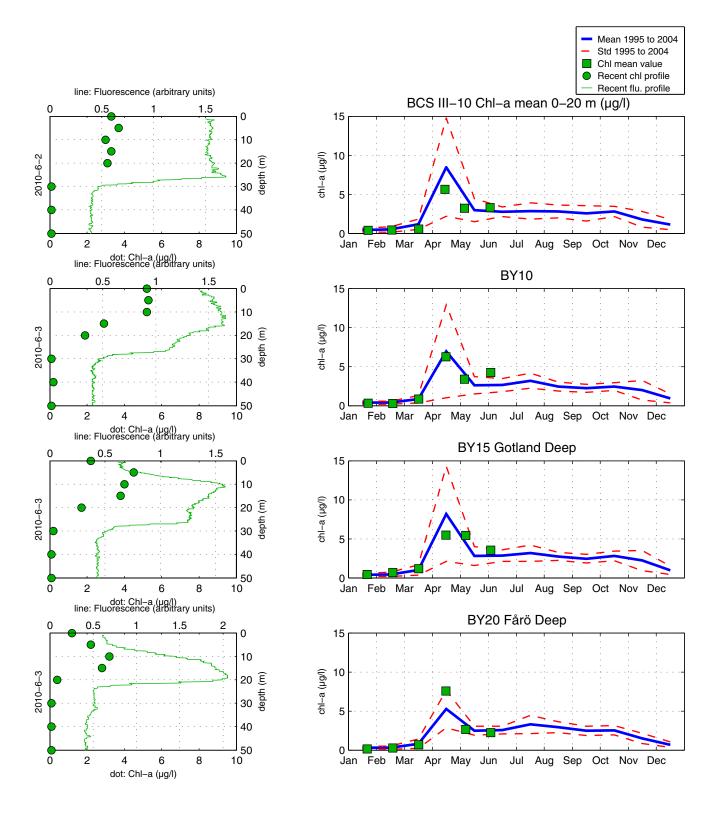

The diatom *Skeletonema costatum* complex was common in the Kalmar Sound. Photo: A-T Skjevik.

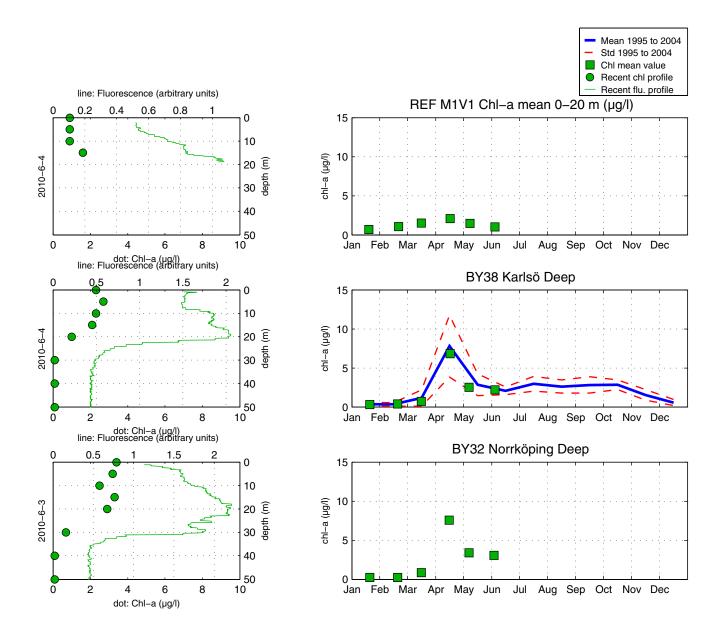
Phytoplankton analysis and text by: Marie Johansen


Selection of observed species	Å17	Släggö	N14	Anholt E	Anholt E
Red=potentially toxic species	2010-05-31	2010-05-31	2010-06-01	2010-06-01	2010-06-05
	cells/l	cells/l	cells/l	cells/l	cells/l
Chaetoceros danicus		,	present		
Cylindrotheca closterium	present	present	present	present	present
Dactyliosolen fragilissimus		present	abundant	common	abundant
Guinardia delicatula		present		present	
Leptocylindrus minimus			common	present	
Nitzschia longissima		present			
Proboscia alata	present	present	common	present	present
Pseudo-nitzschia delicatissima-group			common	present	
Rhizosolenia hebetata	present			present	
Skeletonema costatum complex			abundant	common	present
Thalassionema nitzschioides		present	common	present	common
Thalassiosira spp.		present			
Ceratium fusus	present	present		present	present
Ceratium lineatum		present			
Ceratium longipes		present			
Ceratium tripos		present		present	
Azadinium spinosum		present			
Dinophysis acuminata		present			
Dinophysis norvegica	present	present	present	present	
Dinophysis rotundata		present			
Gymnodinium simplex	present	present		present	
Gymnodiniales spp.	present	present	present		
Heterocapsa rotundata		present		present	
Katodinium glaucum	present		present		
Protoceratium reticulatum		present		present	present
Protoperidinium bipes	present				
Protoperidinium brevipes		present			
Protoperidinium depressum		present			
Protoperidinium pellucidum		present			present
Protoperidinium steinii	present	present			
Protoperidinium spp.	present	present	present		present
Scrippsiella-complex spp.	-	present	-	present	present
Chrysochromulina spp.		-	common	common	present
Cryptomonadales spp.	common	abundant	abundant	abundant	abundant
Teleaulax spp.					present
Teleaulax acuta		present	present	present	
Teleaulax amphioxeia	present	present	present	present	present
Plagioselmis prolonga	present	common	common	common	common
Pterosperma spp.		present			present
Pyramimonas spp.		present	common		present
Dinobryon faculiferum					present
Dinobryon spp.	present	present	common	common	present
Leucocryptos marina	present	common	present	common	common
Emiliana huxleyi	dominating	common	abundant	abundant	present
Ciliophora spp.		present	present	present	present
Mesodinium rubrum		present	present		present

Selection of observed species	BY2	BCS III-10	BY15	BY38	Ref. M1-V1
Red=potentially toxic species	2010-06-01	2010-06-02	2010-06-03	2010-06-04	2010-06-04
	cells/l	cells/l	cells/l	cells/l	cells/l
Chaetoceros danicus	present				
Chaetoceros similis		present	present		present
Chaetoceros spp.	present				
Leptocylindricus danicus	present				
Skeletonema costatum complex	common				abundant
Thalassiosira spp.	present				
Amylax triacantha				present	
Cladopyxis claytonii				present	
Dinophysis acuminata	present	present	present	present	
Dinophysis norvegica	present	present	present		
Gymnodinium spp.	present		present	present	present
Gyrodinium spirale				present	
Heterocapsa rotundata	common		present		present
Katodinium glaucum	present	present	present		
Peridiniella catenata				present	
Protoperidinium bipes				present	present
Protoperidinium brevipes		present		present	
Protoperidinium spp.	present			present	present
Scripsiella complex	present	present			
Chrysochromulina polylepis		common			
Chrysochromulina spp.	common		present	common	present
Cryptomonadales spp.	common	common	common	present	present
Plagioselmis prolonga	present			present	present
Teleaulax amphioxeia	present		present	present	present
Pyramimonas spp.	common				
Dinobryon balticum				common	
Dinobryon faculiferum				common	common
<i>Dinobryon</i> spp.	present	present	present	abundant	common
<i>Meringosphaera</i> spp.				present	
Pterosperma spp.		abundant	abundant	common	present
<i>Anabaena</i> spp.		present			
<i>Aphanizomenon</i> spp.		present	present	present	
Calliacantha natans					common
Ciliophora spp.	common	common	common	common	present
Mesodinium rubrum	present	common	common	present	present


The Skagerrak


The Kattegat and the Sound


The Southern Baltic

The Eastern Baltic

The Western Baltic

Om klorofylldiagrammen

Klorofyll *a* är ett mått på mängden växtplankton. Prover tas från ett antal djup från U/F Argos. Data presenteras både från de fasta djupen och som medelvärden 0-20 m. Utöver resultaten från laboratorieanalyserna av vattenprover mäts klorofyll *a* som fluorescens från ett automatiskt instrument som sänks ned från fartyget. På så sätt kan djupt liggande, ibland, tunna lager av växtplankton observeras.

About the chlorophyll graphs

Chlorophyll *a* is sampled from several depths from the R/V Argos. Data is presented both from the discrete depths and as an average 0-20 m. In addition to the laboratory analysis from the water samples chlorophyll fluorescence is measured in continuous depth profiles from the ship. This is a way to observe thin layes of phytoplankton occurring below the surface.

Om AlgAware

SMHI genomför ca en gång per månad expeditioner med U/F Argos i Östersjön och Västerhavet. Resultat baserade på semikvantitativ mikroskopanalys av planktonprover samt klorofyllmätningar presenteras kortfattat i denna rapport. Information från SMHI:s satellitövervakning av algblomningar finns på www.smhi.se.

About AlgAware

SMHI carries out monthly cruises with R/V Argos in the Baltic and the Kattegat/Skagerrak. Results from semi quantitative microscopic analysis of phytoplankton samples as well as chlorophyll measurements are presented in brief in this report. Information from SMHI:s satellite monitoring of algal blooms is found on www.smhi.se.

Art / Species	Gift / Toxin	Eventuella symptom	Clinical symptoms
Alexandrium spp.	Paralytic	Eventuella symptom Milda symptom:	Mild case:
	shellfish	Inom 30 min.:	Within 30 min:
	poisoning	Stickningar eller en känsla av	tingling sensation ro numbness around lips,
	(PSP)	bedövning runt läpparna, som	gradually spreading to face and neck; prickly
		sprids gradvis till ansiktet och nacken;	sensation in fingertips and toes; headake,
		stickningar i fingertoppar och tår;	dizziness, nausea, vomiting, diarrhoea.
		Huvudvärk; yrsel, illamående,	Extreme case
		kräkningar, diarré	Muscular paralysis; pronounced respiratory
		Extrema symptom:	difficulty; choking sensation; death trough
		Muskelförlamning;	respiratory paralysis may occur within 2-24
		andningssvårigheter; känsla av att	hours after ingestion.
		kvävas;	
		Man kan vara död inom 2-24 timmar	
		efter att ha fått i sig giftet, på grund av	
		att andningsmuskulaturen förlamas. Milda symptom:	
Dinophysis spp.	Diarrehetic		Mild case:
	shellfish	Efter cirka 30 minuter till några	Within 30 min-a few hours:
	poisoning	timmar:	dizziness, nausea, vomiting, diarrhoea,
	(DSP)	yrsel, illamående, kräkningar, diarré,	abdominal pain. Extreme case:
		magont	Repeated exposure may cause cancer.
		Extrema symptom:	
		Upprepad exponering kan orsaka	
Pseudochattonella	Fish toxin	cancer Låg celltäthet:	Low cell numbers:
	Tisii toxiii	Ingen påverkan.	No effect on fish.
spp.		Hög celltäthet:	High cell numbers:
Pseudo- nitzschia	Amnesic	Fiskens gälar skadas, fisken dör. Milda symptom:	Fish death due to gill damage. Mild case:
spp.	shellfish	Efter 3-5 timmar:	Within 3-5 hours: dizziness, nausea, vomiting,
	poisoning	yrsel, illamående, kräkningar, diarré,	diarrhoea, abdominal cramps.
	(ASP)	magkramper	Extreme case:
		Extrema symptom:	dizziness, hallucinations, confusion, loss of
		Yrsel, hallucinationationer, förvirring,	memory, cramps.
		förlust av korttidsminnet, kramper	

Översikt av potentiellt skadliga alger och det aktuella giftets effekt. Overview of potentially harmful algae and effects of toxins. Manual on harmful marine microalgae (2003 - UNESCO Publishing).

Kartan på framsidan visar viktat medelvärde för klorofyll *a,* μg/l (0-20 m) vid de olika stationerna. Förekomst av skadliga alger vid stationer där arter analyseras markeras med symbol. Då cirkeln är tom innebär detta att stationen inte provtagits.

The map on the front page shows weighted mean of chlorophyll a, $\mu g/l$ (0-20 m) at sampling stations. Presence of harmful algae at stations where species analysis is performed is shown with a symbol An empty cirkel indicates that there has been no sampling at that station.

