
Sammanfattning

Prymnesiophyten *Chrysochromulina* spp.* blommade i Skagerrak och i Kattegatt. I övrigt var kiselalgen *Pseudo-nitzschia* spp.* vanlig i Skagerrak. Kalkflagellaten *Emiliania huxleyi*, som är känd för att orsaka vackert turkosfärgat vatten men i övrigt är ofarlig, blommade vid P2 i Skagerraks kustområde. Turkost vatten uppmärksammades vid flera stationer, men bara ett fåtal celler av *E. huxleyi* fanns i proverna så blomningen kan ha befunnit sig under 10 meters djup.

I Kattegatt var kiselalgerna *Pseudo-nitzschia* spp.* och *Phaeodactylum tricornutum* vanliga utöver *Chrysochromulina**-blomningen.

Intressanta fluorescens maxima mättes upp i Skagerrak och Kattegatt mellan 15-20 meter, men alla integrerade (0-20 m) värden låg inom medel för denna månaden.

I Östersjön hade mängden av cyanobakterien *Aphanizomenon* spp. ökat rejält jämfört med den förra provtagningen. De senaste dagarna har man dessutom kunnat se ytansamlingar med hjälp av satellitbilder, http://www.smhi.se/cmp/jsp/polopoly.jsp?d=7826&l=sv

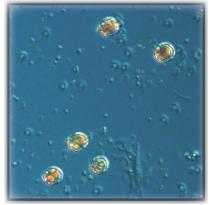
Abstract

The prymnesiophyte *Chrysochromulina* spp.* was blooming in the Skagerrak and Kattegat areas. The diatom genus *Pseudonitzschia** was common in the Skagerrak. The calcium flagellate *Emiliania huxleyi*, non toxic but known to colour the water beautifully turquoise, bloomed at P2 at the Skagerrak coast. The turquoise water was observed at more stations, but the bloom may have been below 10 meters because only a few cells of *E. huxleyi* were found in the samples.

Apart from the *Chrysochromulina** bloom in the Kattegat, the diatoms *Pseudo-nitzschia* spp.* and *Phaeodactylum tricornutum* were common in this area.

Interesting fluorescence maxima were found between 15-20 meters throughout the Skagerrak and Kattegat areas, although the integrated (0-20 m) values were within average for this month.

In the Baltic Sea the amount of the cyanobacterium *Aphanizomenon* spp. had increased a lot since the last sampling took place. These last days surface accumulations have been visible on satellite images, http://www.smhi.se/cmp/jsp/polopoly.jsp?d=7826&l=en


The Skagerrak

Å17 8th of June (open Skagerrak)

A few species were present and the prymnesiophyte *Chrysochromulina* spp.* was the most numerous genus. Small flagellates like the heterotrophic species *Leucocryptos marina* were common.

Släggö 8th of June (Skagerrak coast)

Chrysochromulina spp.* was found with the highest cell numbers, and both *Pseudo-nitzschia delicatissima*-group* and *Pseudo-nitzschia seriata*-group* (diatoms) were very common. Diatom and dinoflagellate species were many and several potentially toxic species were present in low amounts.

Emiliania huxleyi cells and small coccoliths from their cell walls lying around.

There were interesting fluorescence peaks between 15-20 meters depth throughout the Skagerrak area. Maybe partly caused by the coccolithophorid *Emiliania huxleyi* that was found in a state of bloom at the station P2. Plankton was sampled at P2 because of the turquoise water usually caused by *E. huxleyi*. *E. huxleyi* is however non toxic.

The Kattegat

N14 Falkenberg 9th of June

The prymnesiophyte *Chrysochromulina* spp.* was the most common genus and the diatom *Skeletonema costatum* was very numerous. The diatoms *Phaeodactylum tricornutum* and *Pseudo-nitzschia delicatissima*-group* and the flagellate *Leucocryptos marina* were common.

Anholt E 9th and 13th of May

Chrysochromulina spp.* was very common at both visits, but apart from that the species composition differed a lot between the two sampling occasions. The number of species and the total cell numbers were a lot higher at the second visit. The chlorophyll a values were also higher at the second stop, at the surface it was nearly three times as high compared to the first occasion. The integrated (0-20 meter) chlorophyll a value was higher as well the second time.

Chrysochromulina sp.

Selection of observed species	Å17	Släggö	P2	N14	Anholt E	Anholt E
Red=potentially toxic species	2009-06-08	2009-06-08	2009-06-08	2009-06-09	2009-06-09	2009-06-13
	cells/l	cells/l	cells/l	cells/l	cells/l	cells/l
Cerataulina pelagica		present		present		
Chaetoceros decipiens				present		
Cylindrotheca closterium		present			present	present
Dactyliosolen fragilissimus		present		present	present	present
Guinardia delicatula				present		
Guinardia flaccida					present	
Leptocylindrus danicus		present		present		present
Leptocylindrus minimus		present				
cf. Nitzschia longissima		present			present	
Phaeodactylum tricornutum				common	common	common
Proboscia alata		present		present		common
Pseudo-nitzschia delicatissima-group	present	70 000		common	present	present
Pseudo-nitzschia seriata-group	<u> </u>	70 000		present		
Rhizosolenia imbricata	present	present		present		present
Rhizosolenia setigera		present		present		present
Skeletonema costatum complex		present		158 000		common
Thalassionema nitzschioides		present		present	present	present
cf. Azadinium spinosum				present	present	present
Ceratium fusus	present	common			present	present
Ceratium lineatum		present				present
Ceratium longipes		present				I
Ceratium macroceros		present			present	
Ceratium tripos	present	present		present	present	present
Cladopyxis claytonii	present	p. coo		p. coo	Processi	Processi
Dinophysis acuminata	<u> </u>	present				
Dinophysis norvegica		present				present
Dinophysis rotundata		present				processi
Gyrodinium flagellare		processi		present		present
Heterocapsa rotundata	present	present		present		present
Heterocapsa spp.	present	p. coo		p. coo		present
Heterocapsa triquetra		present		present	present	present
Karlodinium micrum		present		p. coo	present	present
Lingulodinium polyedrum		P			P	present
Peridiniella danica				present		,
Protoperidinium conicum		present		1		
Protoperidinium steinii		present			present	
Scrippsiella complex		p. coo		present	p. coo	
Chrysochromulina spp.	828 000	209 000		385 000	70 000	85 000
Emiliania huxleyi		present	2 350 000		present	
Cryptomonadales spp.	65 000	common		common	common	178 000
Eutreptiella spp.		present		present		
Pyramimonas spp.	present	present		present		present
Apedinella radians				present		
Dinobryon faculiferum	present	present		present	present	common
Quadricoccus euryhalinicus		,		, 223.11	,	present
Anabaena spp.	<u> </u>				present	common
Nodularia spumigena						present
Calliacantha longicaudata		present		present	present	common
Calliacantha natans	<u> </u>	present		present	present	present
Ebria tripartita		present		present	present	present
Leucocryptos marina	55 000	present		87 000	common	154 000
Telonema subtilis	present	F. 000111		present	common	present
Mesodinium rubrum	p.000111	present		p.00011t	3311111011	present
Strombidium spp.	†			present		·
опонышн эрр.		present		present	<u> </u>	present

The Baltic Sea

Weak surface accumulations of cyanobacteria were visible in the Hanö bight and around Gotland on the 21st and 22nd of june, interpreting satellite images using BAWS, (Baltic Algal Watch System) http://www.smhi.se/cmp/jsp/polopoly.jsp?d=7826&l=en.

Arkona Basin BY2 and Bornholm Basin BY5 10th of June

The prymnesiophyte *Chrysochromulina polylepis**, the prasinophyte *Pyramimonas* spp. and chryptophytes dominated the phytoplankton samples. The amount of the filamentous cyanobacterium *Aphanizomenon* spp. had increased a lot compared to the previous sampling and traces of the filamentous cyanobacteria *Anabaena* spp. and *Nodularia spumigena** were observed. The integrated chlorophyll *a* concentrations were within average for this month.

The cyanobacterium *Aphanizomenon* sp.

South East Baltic BCS III-10 10th of June

The phytoplankton situation was very similar to the one at the stations above apart from the fact that *C. polylepis** was less abundant and the dinoflagellate *Dinophysis norvegica** was common. The integrated chlorophyll *a* concentration was within average.

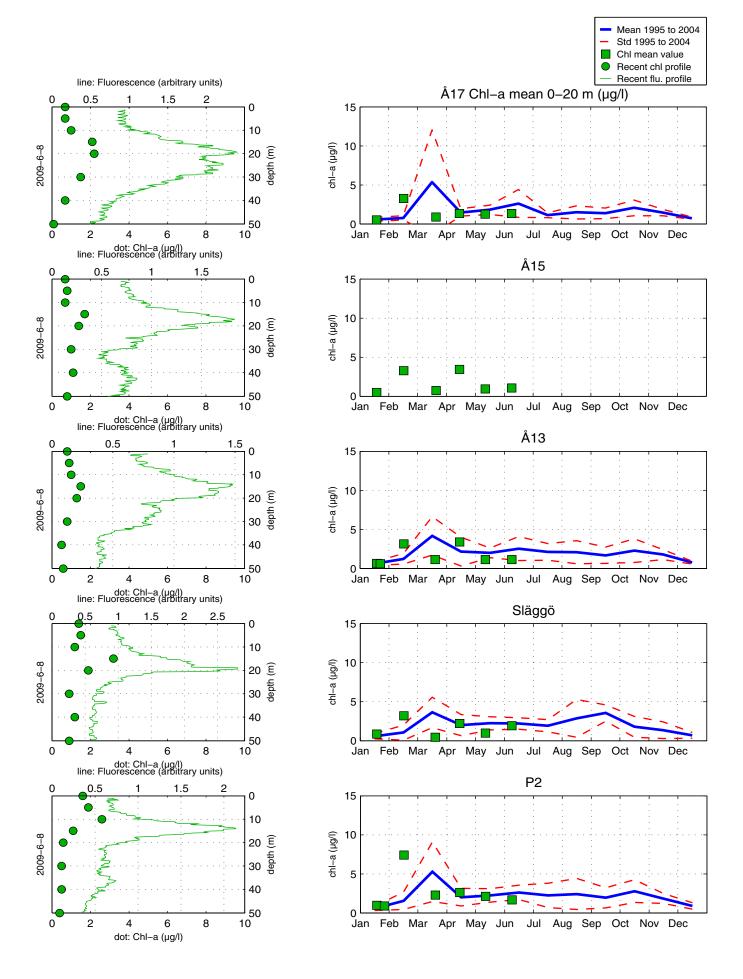
Eastern Gotland Basin BY15 11th of June and Western Gotland Basin BY 38 12th of June

These were the stations where the cyanobacterium *Aphanizomenon* spp. was the most abundant this month. The prymnesiophyte *Chrysochromulina polylepis**, the chrysophyte *Dinobryon faculiferum* and the prasinophyte *Pyramimonas* spp. were very numerous and the dinoflagellates *Dinophysis acuminata* and *D. norvegica** were common. The cyanobacterium *Nodularia spumigena** was present at BY38. The integrated chlorophyll *a* concentrations were within average for this month.

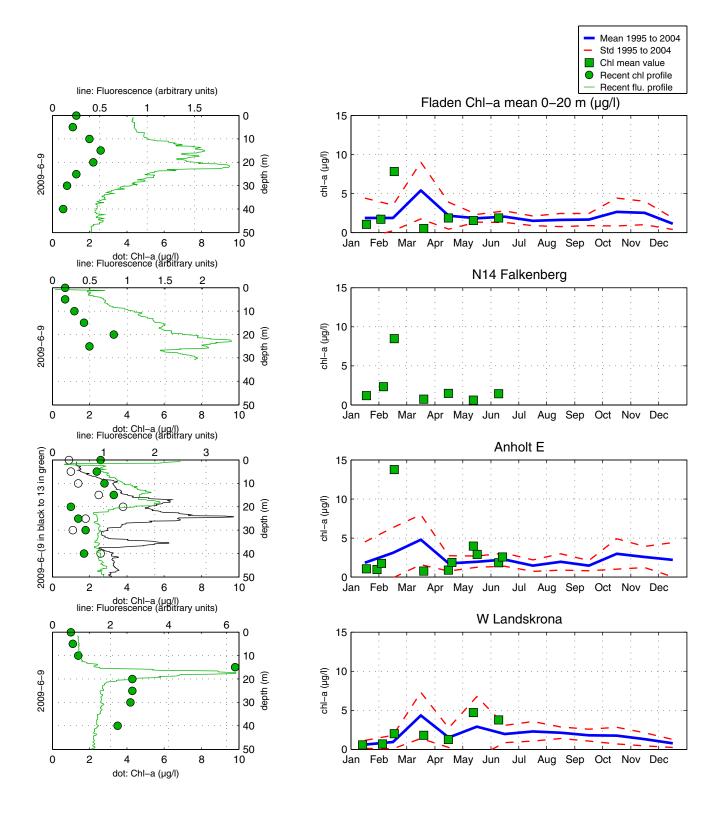
Kalmar Sound Ref. M1-V1 12th of June

The amount of the cyanobacterium Aphanizomenon spp. was high and the prymnesiophyte Chrysochromulina

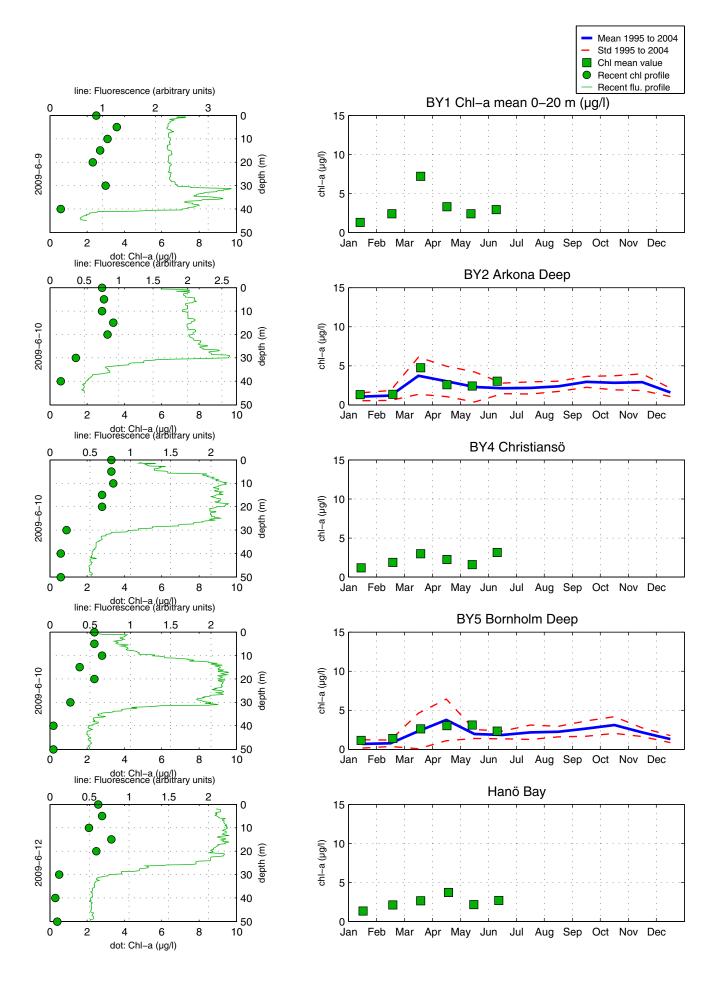
polylepis* and the prasinophyte *Pyramimonas* spp. were found with high cell numbers. Cryptohytes were very common and *Heterocapsa triquetra* was the most common dinoflagellate. The dinoflagellates *Dinophysis acuminata**, *D. norvegica** and *D. rotundata** were present.

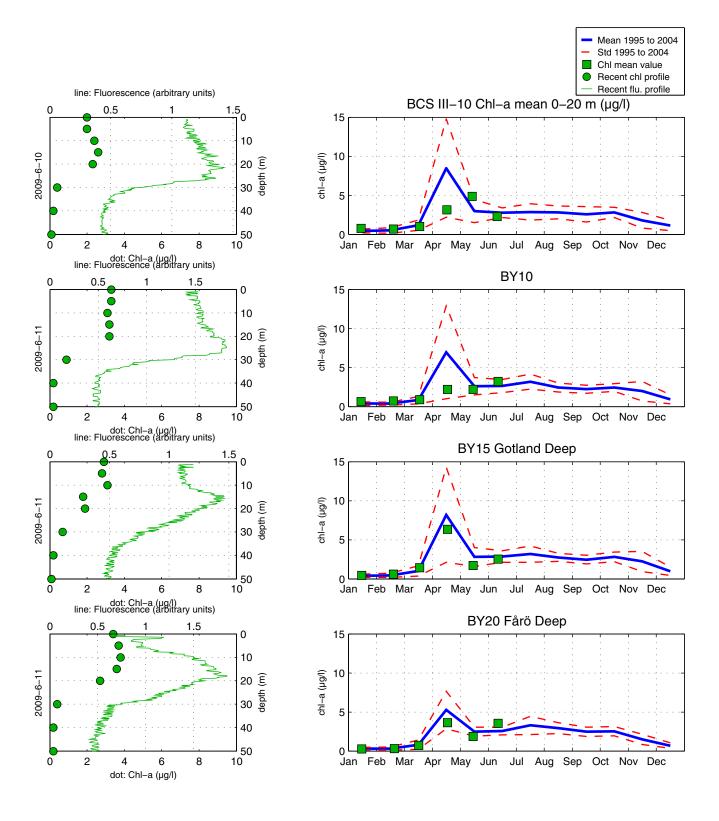


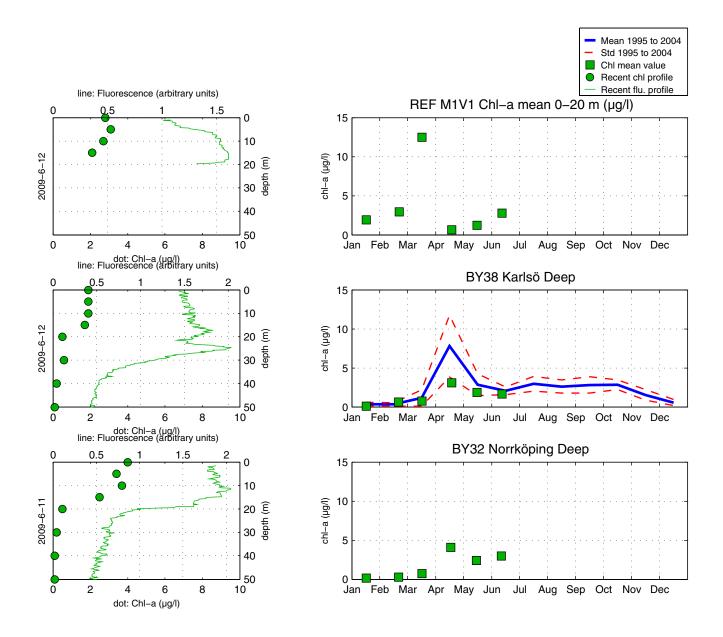
Dinophysis rotundata


Phytoplankton analysis and text by: Ann-Turi Skjevik

Selection of observed species	BY2	BY5	BCS III-10	BY15	BY38	Ref. M1-V1
Red=potentially toxic species	2009-06-10	2009-06-10	2009-06-10	2009-06-11	2009-06-12	2009-06-12
¹ quantified in m/l	cells/l	cells/l	cells/l	cells/l	cells/l	cells/l
Chaetoceros danicus			present	present		
Chaetoceros impressus	present	present		present		
Chaetoceros throndsenii	present					
Dinophysis acuminata				common	present	present
Dinophysis norvegica	present	present	present	common	present	present
Dinophysis rotundata						present
Gyrodinium flagellare	present					
Heterocapsa rotundata	present	common	common	common	present	present
Heterocapsa spp.	present	77 000	common	common	common	present
Heterocapsa triquetra						common
Karlodinium micrum						present
Katodinium glaucum				present		
Lingulodinium polyedrum						present
Peridiniella danica	present		present	present	present	present
Chrysochromulina spp.	966 000	1 560 000	215 000	224 000	355 000	510 000
Cryptomonadales spp.	96 000	150 000	common	common	99 000	76 000
Dinobryon faculiferum	present	common	present	common	140 000	present
Pyramimonas spp.	160 000	420 000	57 000	57 000	170 000	233 000
Anabaena spp.		present				present
Aphanizomenon spp.	3.5	2	3	11	12	8
Nodularia spumigena	present				present	
Calliacantha longicaudata				present	present	
Calliacantha natans	present			common	present	present
Ebria tripartita				present	present	
Leucocryptos marina				present	present	present
Mesodinium rubrum		present	present	common	present	present


The Skagerrak


The Kattegat and the Sound


The Southern Baltic

The Eastern Baltic

The Western Baltic

Om klorofylldiagrammen

Klorofyll *a* är ett mått på mängden växtplankton. Prover tas från ett antal djup från U/F Argos. Data presenteras både från de fasta djupen och som medelvärden 0-20 m. Utöver resultaten från laboratorieanalyserna av vattenprover mäts klorofyll *a* som fluorescens från ett automatiskt instrument som sänks ned från fartyget. På så sätt kan djupt liggande, ibland, tunna lager av växtplankton observeras.

About the chlorophyll graphs

Chlorophyll *a* is sampled from several depths from the R/V Argos. Data is presented both from the discrete depths and as an average 0-20 m. In addition to the laboratory analysis from the water samples chlorophyll fluorescence is measured in continuous depth profiles from the ship. This is a way to observe thin layes of phytoplankton occurring below the surface.

Om AlgAware

SMHI genomför ca en gång per månad expeditioner med U/F Argos i Östersjön och Västerhavet. Resultat baserade på semikvantitativ mikroskopanalys av planktonprover samt klorofyllmätningar presenteras kortfattat i denna rapport. Information från SMHI:s satellitövervakning av algblomningar finns på www.smhi.se.

About AlgAware

SMHI carries out monthly cruises with R/V Argos in the Baltic and the Kattegat/Skagerrak. Results from semi quantitative microscopic analysis of phytoplankton samples as well as chlorophyll measurements are presented in brief in this report. Information from SMHI:s satellite monitoring of algal blooms is found on www.smhi.se.

Art / Species	Gift / Toxin	Eventuella symptom	Clinical symptoms		
Alexandrium spp.	Paralytic	Eventuella symptom Milda symptom:	Mild case:		
	shellfish	Inom 30 min.:	Within 30 min:		
poisoning		Stickningar eller en känsla av	tingling sensation ro numbness around lips,		
	(PSP)	bedövning runt läpparna, som	gradually spreading to face and neck; prickly		
		sprids gradvis till ansiktet och nacken;	sensation in fingertips and toes; headake,		
		stickningar i fingertoppar och tår;	dizziness, nausea, vomiting, diarrhoea.		
		Huvudvärk; yrsel, illamående,	Extreme case		
		kräkningar, diarré	Muscular paralysis; pronounced respiratory		
		Extrema symptom:	difficulty; choking sensation; death trough		
		Muskelförlamning;	respiratory paralysis may occur within 2-24		
		andningssvårigheter; känsla av att	hours after ingestion.		
		kvävas;			
		Man kan vara död inom 2-24 timmar			
		efter att ha fått i sig giftet, på grund av			
		att andningsmuskulaturen förlamas. Milda symptom:			
Dinophysis spp.	Diarrehetic		Mild case:		
	shellfish	Efter cirka 30 minuter till några	Within 30 min-a few hours:		
	poisoning	timmar:	dizziness, nausea, vomiting, diarrhoea,		
	(DSP)	yrsel, illamående, kräkningar, diarré,	abdominal pain. Extreme case:		
		magont	Repeated exposure may cause cancer.		
		Extrema symptom:			
		Upprepad exponering kan orsaka			
Pseudochattonella	Fish toxin	cancer Låg celltäthet:	Low cell numbers:		
	Tisii toxiii	Ingen påverkan.	No effect on fish.		
spp.		Hög celltäthet:	High cell numbers:		
Pseudo- nitzschia	Amnesic	Fiskens gälar skadas, fisken dör. Milda symptom:	Fish death due to gill damage. Mild case:		
spp.	shellfish	Efter 3-5 timmar:	Within 3-5 hours: dizziness, nausea, vomiting,		
	poisoning	yrsel, illamående, kräkningar, diarré,	diarrhoea, abdominal cramps.		
	(ASP)	magkramper	Extreme case:		
		Extrema symptom:	dizziness, hallucinations, confusion, loss of		
		Yrsel, hallucinationationer, förvirring,	memory, cramps.		
		förlust av korttidsminnet, kramper			

Översikt av potentiellt skadliga alger och det aktuella giftets effekt. Overview of potentially harmful algae and effects of toxins. Manual on harmful marine microalgae (2003 - UNESCO Publishing).

Kartan på framsidan visar viktat medelvärde för klorofyll *a,* μg/l (0-20 m) vid de olika stationerna. Förekomst av skadliga alger vid stationer där arter analyseras markeras med symbol. Då cirkeln är tom innebär detta att stationen inte provtagits.

The map on the front page shows weighted mean of chlorophyll a, $\mu g/l$ (0-20 m) at sampling stations. Presence of harmful algae at stations where species analysis is performed is shown with a symbol An empty cirkel indicates that there has been no sampling at that station.

