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Abstract

A 3-dimensional baroclinic model of the North Sea and the Baltic Sea,
designed for a daily operational use is described in detail. The model is
based on a similar model running in operational mode at the German Fed-
eral Maritime and Hydrographic Agency (BSH) in Hamburg, Germany. The
operational forecasts started in 1995 with a daily 24-hour forecast and was
later extended to 48 hours. The model is mainly forced by SMHI’s op-
erational atmospheric model (HIRLAM), but also by river runoff from an
operational hydrological model and wave radiation stress from a wind wave
model. The present version of the model is set up on a nested grid where a
12 nautical mile (nm) grid covers the whole area while Skagerrak, Kattegat,
the Belt Sea and the Baltic Sea are covered with a 1 nm grid. A parallelized
version of the model has been developed and runs on a distributed memory
parallel computer.
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1 Introduction

The use of numerical circulation models has a long tradition at SMHI. From the
mid 70’s, baroclinic 3D models have been used preferably in connection with
environmental-oriented problems like spreading of oil, cooling water outlets from
power plants and long-term spreading of radio-active substances, see [?], [?], [?]
and [?]. Since the 70’s there have also been a number of more process-oriented
studies with 3D models, e.g. [?], [?], [?] and [?].

However, it was not until 1991 that the first use of an operational circulation
model started at SMHI with a vertical integrated model covering the Baltic Sea
with a resolution of 5 km and forced by daily weather forecasts and in- and out-
flow through the Danish Straits [?]. Later, in 1994 a three-dimensional barotropic
version of the POM model (Princeton Ocean Model [?]), covering both the North
Sea and the Baltic Sea with 6 vertical levels and a horizontal resolution of 10 km,
was set in operational use. With this model it was then possible to give a more
accurate forecast of surface currents in all the Swedish coastal water.

At the same time, a fruitful cooperation with the German Federal Maritime
and Hydrographic Agency (BSH) started with the aim of a common operational
system for the North Sea and Baltic Sea region. BSH already since 1993 had a
fully operational model working for the North Sea/Baltic Sea region including an
ice module and an interface to a operational wave model [?]. In transferring the
BSH model to a more general Baltic Sea model, the main modifications of the
model itself only composed of changing the nesting from a configuration adapted
to the German waters to a more general one.

The main objectives of the HIROMB cooperation are:

1) The model should constitute the basis for a common operational system for
all states surrounding the Baltic Sea.
i1) All states with a border to the Baltic Sea should be invited to the HIROMB
project, and the member institute of each state should be appointed by the rele-
vant ministry.

iii) The model should be run at one place where access to a supercomputer could
be granted.

iv) The output from the operational run should be distributed to all members of
the project.

v) Each participating state should contribute equally to the maintenance and de-
velopment of the system.

The project got the acronym HIROMB, which stands for High Resolution Op-
erational Model for the Baltic Sea. At the first stage, Germany (BSH) and Sweden
(SMHI) were the only members and in 1999 three more countries (Denmark, Fin-
land and Poland) joined the project.

The first pre-operational runs started in summer 1995. At that time, the model
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was run once daily on a vector-computer (Convex 3840) producing a 24-hour fore-
cast. In 1997, the model was transferred to a CRAY C90 parallel shared memory
vector computer at the National Supercomputer Centre in Sweden. This made it
possible to increase the forecast length to 48 hours, but still with only one simu-
lation a day. During 1997-99, the model code has successively been parallelized
[?] and a special method of partitioning the computational domain has been devel-
oped [?]. At present (1999), the 1 nm model runs on a distributed memory parallel
CRAY T3E computer in parallel with a backup version on a SGI3800 computer.

The model output is archived and all members of the HIROMB project have
access to the complete data base via a ftp-server. A WEB-site has been set up for
real-time presentation of forecasts together with validation.

2 Grid configuration

Basically, there are two factors that determine the model area. Firstly, each project
member has their own interest area and though the main region of interest is the
Baltic Sea, countries like Sweden, Denmark and Germany also have interest in
the Kattegat, Skagerrak and the North Sea. Secondly, the model area has an open
boundary to the Atlantic and there is no ultimate choice of its location. Both
physical and computational aspects have to be taken into consideration, and this
has led to the following configuration (see also ?? and ??).

1. A storm surge model for the NE Atlantic. This model only supplies that
part of the water level at the boundary between the Atlantic and the North
Sea that is driven by solely the meteorological forcing. The tidal motion is
added as an open boundary condition, treated in a similar manner as salinity
and temperature (see section 3.2).

2. A nested set of HIROMB modules with a resolution ranging from a
relatively coarse level for the North Sea down to 1 nautical mile for the
Skagerrak, Kattegat and the Baltic Sea. The 1 nm grid (see Figure ??)
covers the entire Baltic Sea. Boundary values at the open western border at
10° E are provided by a coarser 3 nm grid. This grid (see Figure ??) covers
the waters east of 6° E.



grid No of points No of points increment in increment in

in W-E in S-N longitude latitude
NE Atlantic 52 46 40’ 24°
HIROMB 12nm 105 88 200 12
HIROMB 3nm 294 253 5 3
HIROMB 1nm 752 735 1’40~ r

Table 1: Horizontal configuration of the HIROMB grids

Figure 1: The 12, 3 and 1 nm grids for the 3D model incapsulated by the 24 nm
grid for the North-East Atlantic storm surge model.
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Figure 3: The 3 nm grid, to the left has 154 894 active grid points of which 19 073
are surface points. The 12 nm grid, to the right, also covers the North Sea and has
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9240 active grid points of which 2171 are surface points.

Figure 2: The grid with 1 nm resolution covers the area from Skagerrak to the
Baltic Sea. There are 1126 607 active grid points of which 144 449 are surface
points. The maximum depth is 710 m in Skagerrak and 460 m in the Baltic Sea.
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3 Forcing

HIROMB requires input from both an atmospheric and a hydrological model as
well as from an ocean wave model. This dependence on results from other models,
makes HIROMB sensitive to the security of the whole forecast production envi-
ronment at SMHI. It also has consequences on the delivery time of the HIROMB
forecast. However, having all three disciplines at the same institute facilitates a
full control of the whole forecast system. In a future perspective, there are plans
that the ocean and atmospheric models both will run in parallel, i.e. in a two-way
coupled mode.

From 1999, the hydrological model runs in an operational mode. This means
that river runoff is available in real-time. The different forcing components are
described in detail in the following subsections.

3.1 Atmospheric forcing

The atmospheric model [?] provides HIROMB with sea level pressure, wind at 10
m above surface, air temperature and specific humidity at 2 m above surface and
total cloudiness. These parameters fully control the momentum and the thermo-
dynamic balance between the sea surface and the atmosphere.

The momentum exchange is computed with a drag formula where the drag
coefficient is computed by a linear relatio to the wind speed at 10m height.

cp = 0.001 % (0.7 + 0.09 x Vu? + v?) (1

where u and v is the wind velocity components in m/s. Ignoring sea ice, the
radiation balance can be written as

Q=Qr+Qp+Qu+ Qg (2

where ()7, g, @y and Q) stand for short-wave solar radiation, long-wave radi-
ation, sensible heat flux and latent heat flux respectively. It has been shown [?]
that the Baltic Sea is almost in thermodynamic equilibrium with the atmosphere
averaged over a year. The main contribution comes from the incoming short-wave
radiation which as an annual mean is in balance with the heat loss terms.
According to [?] we use the following formula for the short-wave insolation.

82

1.25 + (1 + s) 552 + 0.046

Qi = Qo

(1—0.6¢) 3)

where (), is the solar constant, s the sine of inclination of the sun above the
horizon according to

s = max(sin ¢ sin 0 + cos ¢ cos d cos w, 0) 4)
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where ¢ is the geographical latitude, § declination angle of the sun and w the time
angle of the local meridian. (); is then calculated as Q; = (1 — «)Q;, where « is
the albedo of the water surface and is here set to 0.07 according to [?].

The net long-wave radiation is computed with a formula from [?].

s

Qp = co(TH1 — 0.26exp(—7.7 % 104(1T—;( —273)%)(1 —0.75¢%)) = T4 (5)

where ¢ is the emissivity of the water surface, o the Stefan-Boltzmann constant,
T, water temperature, 7, air temperature, e, the water vapour pressure in the
atmosphere and c is the cloud coverage ranging from 0 to 1.

The sensible heat flux is driven by the temperature difference between water
and air and is expressed as (see [?])

QH = Cp, QacH(Ta - Ts)Wlo (6)

where ¢, is the specific heat of air, g air density, cy diffusivity constant, 77, air
temperature, 7T; water temperature and W7, wind velocity at 10 m height.
In an analoguos way, the latent heat flux may be written

QE = LQaCE(Qa - QS)Wlo (7)

where L is the latent heat of evaporation, g, air density, c. diffusivity constant, ¢,
specific humidity at sea surface, q, specific humidity at 10 m height and Wy, the
wind velocity at 10m height.

Please note that the thermodynamic forcing terms are dependent on the SST.
Therefore, the atmospheric heat flux cannot be computed in advance, but is deter-
mined while HIROMB works. Those basic atmospheric parameters which one-
way drive the thermodynamics of HIROMB are air temperature, humidity and
cloud cover.

3.2 Open boundary forcing

HIROMB, more precisely the second model in the hierarchy, has an open bound-
ary to the North Atlantic. One part of this boundary line runs through the British
Channel, the other makes a straight line between northern Scotland and south-west
Norway. Along all that line, water level, salinity and temperature are prescribed
at each time step. As described earlier, boundary values of water level come from
two sources. They are superposed by the results of a storm surge model for the
North Atlantic, which is void of tides, and a setup of 17 tidal constituents, speci-
fied for each individual boundary cell.

To supply HIROMB with inflow data of salinity and temperature at its open
boundary, we only have climatological fields, month by month. In order to relax
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their influence on the operational simulation, we have placed a sponge layer along
the boundary line. Its purpose is to act as a buffer between the inner model domain
and a ’climatological reservoir” outside. We imagine the sponge layer to be a filter
literally located in between interior and exterior. It is flushed by the normal flow
component as computed next location to the boundary line. That flow either brings
a climatological signal or outflow from the interior into the sponge. When flow
direction is reversed from outward to inward, it returns what it was filled with,
until, in sustained flow, its capacity is exhausted, and it passes more and more of
the reservoir. Conversely, for outward flow, the sponge empties into the reservoir
which is thought to be of infinite capacity, i.e. does not respond to that input.
The performance of the sponge is a matter if its capacity. This capacity should be
sufficiently large not to let the reservoir be felt in tidal reversions, but sufficiently
small to give an input effect for sustained inflow.

In principle, there are three different types of open boundaries in the model
system:

1) Open boundary between the 2D NE Atlantic storm surge model area and the
outer Atlantic
These boundaries are aligned with latitude and longitude and a radiation condition
[?] is used. At the northern, western, southern and eastern boundary respectively,
it reads

®)

where H is the local depth, ¢ = /g H the local phase velocity and and ¢, the water
elevation caused by the inverse barometric effect, i.e. equal to %. Here, P is the

local current air pressure, P the undisturbed (mean) air pressure and o the water
density.

i1) Open boundary between the 3D North Sea/Baltic Sea model and the 2D NE
Atlantic storm surge model
The internally generated tides of the North Sea and the Baltic Sea are neglible
because their volume is too small. As an example for the Baltic Sea, the internal
tide-generated elevation is only a few centimeters. Thus, all tidal forcing is sup-
plied at the open boundaries between the North Sea and the Atlantic. A large set
of observational data available for this open boundary makes it feasible to specify
the surface elevation caused by 17 tidal constituents. The total elevation at the
boundary is the sum of the surface elevation from the tide and the storm surge
generated elevations.
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iii) Open boundary between the different nested grids in the 3D North Sea/Baltic
Sea model
The coupling between the nested 3D grids is both of a one-way and a two-way
type. For salinity and temperature, which are solved numerically by using an ex-
plicit time-stepping, the coupling is of a two-way type. On the other hand, when
using implicit methods, a two-way coupling is more difficult and for this reason
the coupling for variables solved implicitly is only one-way.

3.3 River runoff

A river runoff model [?] covering the entire Baltic drainage basin, Skagerrak and
Kattegat runs on an operational basis at SMHI. The hydrological model produces
as output, daily river runoff for 43 sub-basins of which 8 represents the Skagerrak-
Kattegat area see ??. A further division of the runoff for each sub-basin is made
between the major rivers ending up at a total of 82 rivers. Climatological monthly
means of river runoff ) are used as backup if the hydrological model has been out
of operation for a week period or longer. Table ?? gives the annual means for 73
rivers.

11



Figure 4: Catchment area for the Baltic Sea, Skagerrak and Kattegat and the dis-
tribution of separate drainage basins (red lines) for which the river runoff forecast
model is run. Also shown with thick black lines are the sub-basins for a chemical
model. Major rivers are marked with blue lines.

4 Basic equations

4.1 Momentum balance and continuity

While the earth is best approximated by an ellipsoid, with the polar and equatorial
radius equal to about 6357 km and 6378 km resp., it is most common to use a
spherical coordinate system. For the radius of the earth, we use a value (6371 £m)
of the polar radius which best represents a sphere with equal mass as the earth.
The surfaces with equal radius are then thought of as geopotential surfaces, per-
pendicular to the gravity vector.
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The momentum equations expressed in spherical coordinates are easily found
in standard text books (see e.g [?]). If we neglect the molecular mixing, the equa-
tions may be expressed as

Du _ tand 1 — ; _ _1_1 0p

P T(buv + Juw 2w sin v — 2w cods ow 5T o0sd oA

Dv | tang 1 - _ ; _110p

D T —uu+ jow 2w sin pu or 26 9)
Dw 1 _ 1 — _ g 10p

o SUU — VU = 2w cos pu 5 or

where ¢ is the latitude, A the longitude and the r the radius. u, v and w are the
velocity components, g acceleration due to gravity (9.81ms~2) and w the rotation
rate of the earth (7.292%107°s~!). The mass conservation equation may be written

as
1Do 10u 1 Ovcos¢p Ow

- - — =0 10
QDt+r8)\ rcos¢ O¢ +8r (10)
Here %, the total derivative, is given by
D
0 u 0 v o 0 (11)

Ht:§+rcos¢a+;8¢ or

4.1.1 Hydrostatic approximation

A careful examination of the orders of magnitude of the terms in ( ??) shows
that to a high degree of approximation, the vertical momentum balance may be
approximated by

- it 12
0 g+gm (12)

This is usually referred to as the hydrostatic approximation.

4.1.2 Reynolds averaging

The flow in the ocean is more or less turbulent and cannot be calculated exactly
due to resolution problems connected to limitations in computer capacity. The
time scale of the motion that are of interest for an ocean model are far beyond
that of the turbulent velocity fluctuations. However, to include the turbulence in
the conservations equations above, it is convenient to regard them as applied to a
type of mean flow and to treat the fluctuating component in the same manner as
the viscous shear stress. Following the statistical approach by Reynolds [?], we
separate the instantaneous values of the velocity components and pressure into a
mean and a fluctuating quantity

u="u-+u, vV=T+, w=w+w, p=p+7p

where the mean of the fluctuating components is zero by definition and the mean
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denoted by a bar is defined as u = % fOT udt. The averaging period has to be
greater than the fluctuating time scale but is more or less artificial as there is hardly
no such separation of scales to be found in nature. Averaging the momentum
equations and ignoring density fluctuations in the acceleration terms result in a
set of equations usually referred to as the Reynolds equations for the mean flow
containing terms like: pu'u/, pu'v’, pu'u’ etc.

If we define the vertical coordinate z as z = r — R, where R is the radius of
our idealized earth, we get with the Reynolds stresses included and neclecting the
bar for mean quantities, the following equations.
Momentum balance

Du tan ¢

- R uv + Ruw+

1 (0 8
Rcoszj)( (UU)—|— a¢(COS¢UU) a(RCOSQﬁU/w,))—
ta}gd)u U’—l— uw/_ f?)— %Rcf)bd,gi
g_g + ta;ﬂbuu—i- va—|— (13)
Tresg (ox (VW) + 5 (cos 9 vV') + F (R cos p v'w’))+
talgd’uu’—l— vw’——fu_QLRg_g

0

0=g+ 45 )

The new terms are called the Reynolds stresses and represent the non-resolved
scales of motion, i.e. what we here regard as turbulence. However, as the new
set of equations is not closed, we have to express the Reynolds stress terms in the
mean quantities. The normal approach to this closure problem is to make use of
the analogy with molecular viscosity concepts as was first outlined by Stokes [?]
and Boussinesq [?]. This means that the stress components are expressed as
proportional to an eddy viscosity times the strain-rate of the mean flow. In a
spherical coordinate system, we get for the stress terms the following expressions

—u' = 2K (558 - o) — 2 div(w,v,w) — % )
7 = KO Sttt
—wh! = K(% + Rcésqbgl)lj)
77 = Kb 3 hE+ 550
— = 2K(§g—”) — 2 div(u,v,0) - & (14)
—w'v = K(% %L‘Z—’i’)
—uw’ = K(Rcisqs ox T dz)
T = K )
—w'w =2K9% — 2de(u 7, W) — %

where K is an eddy viscosity and £ denotes the fluctuating part of the kinetic
energy, 1.e. %(u’u’ + v'v" + w'w’). We also have defined the vertical coordinate =
as z = r — R, where R is the radius of our idealized earth, and approximated r by
R when it appears only as a coefficient.

14



4.1.3 Boussinesq approximation

A further approximation is the quasi-Boussinesq approximation [?], which means
that the continuity equation is replaced by the incompressibility condition and that
density variations are neglected in the inertia term but retained in the buoyancy-
force term only. This is justified because variations in density are normally much
smaller than the mean density, i.e. @ < 1. From the incompressibility assumption
it follows that the divergence of the flow is zero, i.e.

1 Ou  Ocos¢v), Ow
rcos¢(5+7)+—_o (15)

div(u, v, w) =

0z
Equation of continuity

1 Ou  Ocosgv), Ow

Rcosgb(a+ 0¢ )+$:0 (16)

4.1.4 Vertical integration

By integrating the continuity equation( ??) from the bottom, z = —H (\, ¢), to the
surface, z = ((\, ¢, t), we are able to construct an equation for the water (surface)
level. The integration gives

¢ 1 0 0 0
/ ( (—“+7(COS¢U)> w)d —0 17)
g \Rcos¢p \ O\ 0¢ 0z
The kinematic boundary conditions at bottom and surface are
D =
%(2+H()\ ®) =0 } (18)
pi(z = C(A9,1)) =0
or . .
w|B+—Rclos¢>H>\u|B +1EU|B :O_ } (19)
W|s = Fasgruls — Fols = G =0
Replacing for w in the integrated continuity equation gives
¢ d(cos Pv)
f H Rcibg{) (d)\ + ) dz + RcosgbCAu'S + RC¢'U|S+ (20)
Ct Rcoa¢H)‘u|B+ H¢U|B:O
or

1 9 ) ¢
RCOS¢5—(/ Udz)+Rcos¢5—¢(/_HCOS¢UdZ)+<t:0 .
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If p,(), @) denotes the atmospheric pressure at sea surface, the hydrostatic
equation ( ??) can be integrated to give the following expression for the pressure
in the horizontal momentum equations

C(N0)
P\ 6.2) = pa(M &) + / 900\ 6, 2) dz 22)

4.2 Salinity and temperature equations

Again ignoring molecular viscosity and applying the continuity equation and the
Boussinesq approximation, we get the following equations for salinity and tem-
perature
23 ; -
+ div(uS,vS,wS) =0 } 23)

t
%deiv(uT,vT,wT):O

By applying the same method of Reynolds averaging as for the momentum equa-
tions, we have

DS _ 1 (8(—@) + (= cos pv'S’) ) + A(—w'S")

Dt Rcos¢ oA op 0z (24)
DT __ 1 o(—u'T’) O(—cospv'T") (—w'T")

Dt Rcosqﬁ( 2\ Bl ) 0z

The expressions for the Reynolds stress terms analogous to the momentum equa-
tions are

—u'S = thi_wg_f )

—F@:A@%%

—w'S =M% 25)
_W:Mth})3¢?3—,§

VT = h%g_i

—w'T = M,%

Temperature and salinity are coupled to the momentum equations by the equa-
tion of state

0=0(5,T,p) (26)
In the HIROMB model o is computed with the UNESCO formula ( [?]).

4.3 Horizontal mixing

Depending on the large difference in scales between the horizontal and vertical
motion in the ocean, the eddy viscosity for horizontal motion is several orders of
magnitude greater than the vertical one. In the horizontal, we use the approach by
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Smagorinsky [?]. Denoting the horizontal eddy viscosity by K}, the horizontal
stresses can be expressed as

—W — Kth - k
—u'v' = K, D, 27)
—W - —Kth — k'

where D, denotes the horizontal stretching rate defined as

1 Ou 10v tang¢

Dt:Rcosqﬁﬁ_E%_ R ! 28)
Dy denotes the horizontal shearing deformation defined as
Ds:%%+ta}g¢u+Rcis¢% 29
and -
k= (wu +v'')/2 (30)
The horizontal eddy viscosity may then be expressed as
K,=L;D (31)

where L, is a horizontal length scale and D denotes an invariant of the deforma-

tion rate tensor.
D:\/Dg—i—Dt2 (32)

For the length scale we use the formula by Smagorinsky [?]
L} = (kR cos pAN) x (kRAQ) (33)

where x = 0.4. For the eddy diffusivity we simply use the formula M), = K,

4.4 Vertical mixing

The shear stress terms (vertical flux of horizontal momentum) are

_wr = 5,2 (34)
0z

—w'' = KU@ (35)
0z

and in analogy with the horizontal mixing, we define the vertical eddy viscosity

as
K,=L* (36)
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where L, is a vertical length scale and ¢ is defined as
Y =y u?+ 0?2 (37)

In its present version, HIROMB makes use of a diagnostic formula for eddy vis-
cosity. It is of type ( ??), i.e. based on diagnosed length scale and time scale. To
arrive at a formula for the vertical turbulent length scale, we first introduce the
following parameters

The flux Richardson number:

gp'w’

Ris = — S— 38
g p(u'w'u, + v'w',) %)
The gradient Richardson number:
. 9p=
Ri, = —— 2= 39
C R o
where z is defined in [—H < z < (]
The turbulent Prandtl number:
Ri K
Pr=—-2=2 40
"TRi; M, “0)

The turbulence model by [?] gives a functional dependence between Pr and Rz,

Ri,

br= 0.725(Riy + 0.186 — \/Rig — 0.316 Ri, + 0.0346) “1)
o 1 0.725 + 0.688 w)
Pr (Ri, +0.186 + \/Rig —0.316 Ri, + 0.0346)
From this it follows that
Riy = Rig(Riy) = % Rig (43)

For the length scale we use a generalization of the von Karman formula proposed
by Laikhtman [?] and expressed as

Y(1 —4 Riy)
(¥ (1 —4 Riy)).|

where ¢ = /u? + v2. In case of strong variations in the length scale, a smoothing
procedure has ben added. Then, the effective length scale L, comes from the
relaxation equation

L=«&

(44)

d L,
dt

= ¢(L - L) (45)
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This equation reminds one on a dynamic length scale balance equation. However,
no claim is raised, and its intended purpose is nothing but filtering. In this way,
we may likewise construct a similar equation for the vertical eddy viscosity

9 (%

K, =

4.4.1 Non-local turbulence

For any z along the vertical, i.e. [—H < z < (], consider the following integral

expressions
Li(z) = /0 H+225 exp(— /Z;%) dé (47)
LY(z) = /O HQ& exp( :M%) ds (48)
god(z):/[)H+zfi exp(—/:é%) P(z —0) d§ (49)
go“(z):/o_zlﬁ; exp(—/:+6%) B(z+6) b (50)

These terms are based on master distributions of local scales of length £ and fre-
quency . They are constructed to give integral scales of length L, and velocity
. The idea behind is Prandtl’s picture about the action of turbulence in mixing. A
parcel of fluid is considered and followed when it undergoes turbulent excursions.
During its travel, it is continuously disintegrated. In the sense of Prandtl, mixing
length is the statistical distance which is travelled through in the process of disin-
tegration. Here, we are concerned with vertical length scales, i.e. travel distances
along the vertical. We distinguish between upward and downward excursions,
hence the superscripts v and d. A contribution to mixing might come from any lo-
cation on the vertical. Therefore, with respect to any reference location - point of
start - an integral is formed over all the vertical, up to surface and down to bottom.
At each point we fix a dimensionless weight which returns its contribution to the
mixing process. We imagine a probing through the water column. In determining
the length scale, this distribution of weights is integrated over the vertical. The
integration variable ¢ is nothing but the travel distance, always positive. The more
weight is placed at far distances, the greater the length scale. Please note that the
weight distribution always decreases as the probing distance increases.

Of course, the resulting formula has to be consistent with common findings.
In particular, it has to return the well-known Karman length scale formula for a
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logarithmic shear layer. As is not difficult to check, this condition is met by what
we take as the contrived mixing density distribution, see the formula.

Based on this consideration, we go one more step further to also set up an
integral formula for velocity scale. Applying the formula to the example of a
logarithmic shear layer, it becomes clear how an upward and downward integral
have to be combined. We arrive at

Ly(z) = min(Ly(z), Li(2)) (51)

p(2) = maz(p"(2), 9" (2)) (52)

In our application, we insert the Karman-Laikhtman scale ( ??) for L.

4.5 Wind wave forcing

From the viewpoint of a filtered model (large scale, slow evolution), waves make
a subscale process. The presence of waves gives a net effect which comes from
self-correlation. The Stokes drift is a mass flow which originates from correlation
between surface elevation and flow. In an oscillating wave, forward flow and
backward flow do not exactly cancel out but leave a net flow. In the momentum
equations, the quadratic terms also leave a non-vanishing effect on averaging.
Thus, although waves are a much faster phenomenon than what a filtered model is
designed to do, their presence should not be neglected. This is the more necessary
the more intense the waves are, because the filter effect is non-linear with respect
to wave characteristics.

Unlike entirely irregular turbulent fluctuations, waves are much more acces-
sible to modelling. In our context, we employ a phase-averaged model which
describes the comparatively slow evolution of wave energy quantities. There are
several such models at various levels. In our case, use is made of the 2"¢ gen-
eration model HYPAS [?], where the shorthand stands for HYbrid PArametric
and Shallow. In that model, the entire wave energy spectrum is composed in a
hybrid way of wind-sea and swell. Either component is given in a simple form
which depends on only a few parameters. A parameterization is also applied to
the influence of water depth. HYPAS provides what may be considered as the
“wave forcing” for HIROMB. Thus, as for HIRLAM, it is run independently and
in advance of HIROMB.

To account for the effect of waves, the following 6 parameters are extracted
from the operational wave model
1. wind wave energy
2. peak frequency of wind waves
3. dominant direction of wind waves
4. swell energy
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5. peak frequency of swell
6. dominant direction of swell

In a linear approximation the wind waves may be regarded as a superposition
of harmonic waves obeying the dispersion relation

w? = gk tanh(kh) (53)

where w is the frequency, k£ the wave number and A the water depth. For deep
water the dispersion relation reduces to

w? = gk (54)

From the above formula, we also get for the phase velocity ¢ and group velocity
cq the following formulae

¢ = £ tanh(kh)

_ .1 2kh
Cqg = 05(1 + m)

(55)

The wave amplitude and orbital velocities may be treated as fluctuations from the
mean. With the input of energy, frequency and direction from the wave model, the
fluctuations will then take the following form

("= Acos(a — wt)
o — chos;g;(g}gz))
Vv = chosi;fjl;(g]]—j};};z))
W' — Awsin;ikh(lz];f—)z))

cos(a — wt) sin @
1 (56)

cos 0

cos(av — wt) cos

sin(a — wt)

where A is the amplitude, and # the direction of a harmonic wave. Because of
continuity, the phase angle « has to obey the following formula
oJe! Oa
sin @ — + cos 0 — = kR cos 57
mo=3 20 ¢ (57)
For the Reynolds stress terms in the momentum equations, we get by substituting
for the fluctuating quantities from equation( ??)
cos @ T %AQWQ%EZZ;)) sin? @ cos [0)

2 =7 142 QCOShZ(k(h+Z)) .
cos” pu'v’ = ;AW (k) cos # sin 6 cos ¢

cos? pu'w’ =0

vl = L A2, E02) G g gL %)
-2 sinh?(kh) cos ¢
o7 _ 142 QCosh2(k:(h+z)) 2 1

cos 9 V'V = 5 A%w (i) CO8 9COS¢

cospv'w' =0
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By vertical integration of the momentum equations, it is also possible to cal-
culate the influence of wind waves on the large-scale volume fluxes. Using ( ??)
we get for the vertical integration of the z-dependent term in ( ??)

¢ cosh?(k(H + z)) _leg ¢y g
th(kh) = 2= 59
/_H l2(hh) ke Ok =0 (59)

where we also have used the equipartition property of wind wave energy, i.e. &/ =
%Az with £/ denoting the energy. The wave-induced fluxes then become

f_CH cos pu'n’ = gE* sin® § cos ¢
f_CH cos® puv’ = gEL cos 0 sinf cos ¢

— (60)
fc v'u' = gE% sin 6 cosecow
fCHcos¢v V' = gE%cos® ) —— Coszi)
Similarly we get for the wind wave terms in the continuity equations
(| = 3A%w coth(kh) sinf = gZ sin g 61)
(" cos pv'|,—¢ = $A%w coth(kh) cosf = gZ cosf

This net volume flux corresponds to the Stoke’s drift.

4.6 Dynamics of sea ice

The ice model consists of two main components: thermodynamics, i.e. growth
and melting, and dynamics, i.e. drift. As for any other large-scale sea ice model,
the ice drift model is based on continuum mechanics. The ice mechanics model
computes forces and deformation. Thus, its components are an equation of motion
(momentum budget) and a constitutive equation which gives the response of the
ice to deformation. To close the system, there are also evolution equations for the
remaining budget quantities.
The basic equations for momentum balance of sea ice come from 2D-continuum

mechanics, in the case of plane stress. In spherical coordinates, we have

_u_ ou v Ou an 9
pzh(dtJchowg_AJ“Eg?_(t ¢u+f)v+9 S5%) = Tw + 70 + F
- >“+9%§—>=T$+75+F¢

plh( RCquﬁgK_‘_IggZ—i_(
(62)
where
7'1/1\; = Cuwpu (U — U)2 + (V0 — U)2)1/2<uw —u)
75 = Cwpu((t — u)* + (v — 0)*)* (v, —v)
7_;\ — Capa((ua - u)2 + (Ua - U)2)1/2(ua - u) (63)
79 = Capa((tg — u)? + (v — )22 (v, — V)



and

(64)

= Rciw((f_,\(an) + d¢(cos $o12)) — g¢>
Fe = Rc})sqb(%(oél) + %(cos $o)) + Mgy

To characterize the deformation properties of the hypothesized large-scale
continuum mechanics material, use is made of Reiner-Rivlin equations as the gen-
eral form of constitutive equations of a fluid. (Note that a fluid has no reference
configuration. Thus, elastic phenomena are excluded.)

o11 = ((é11 +€2) + n(é11 — €2) — &
O12 = 2112

. 65
021 = 2N 65)
092 = ((€a2 + €11) + (€22 — €11) — §

In spherical coordinates, the rates of deformation read

1 ou tan ¢

€11 = Rcosqﬁﬁ _d R v s o

. o 1 Ou tan 1 v

E12 = €921 = (quﬁ_'_ u -+ R cosg ) (66)
- __ 1ov

Eg2 = Ra¢

It is assumed that large-scale pack ice is isotropic so that its mechanical be-
haviour may be stated in terms of invariants of stress and strain rate

— %(O'11+0'22) } (67)

o= %((011 — 092)% + 4012091) /2

€1 = (€11 + €2)
i . . . 68
érr = ((E11 — E22)? + 4€12601) /2 } (68)

Given these definitions, the constitutive equations, in terms of invariants, read

o1+ 5 = (& } (69)

Orr = Teqg

where P/2 is a reference pressure while ¢ and 7 are viscosities. In Hibler’s famous
viscous-plastic sea ice model, these viscosities are specified as follows.
Let

A:<E%+ E[[/G 1/2 } (70)
be one more invariant of the strain-rate tensor, /Ay some low reference value, and
put

¢ = ok s
B r{laX(A,Ao) 2 (71)

= 2
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As is not difficult to see, the state of stress is confined to the yield ellipse

2
= 5)2 < <5)2 (72)

P
(max(A, Ao))2< 2 2

(0‘[ -+ 5)2 -+ (60‘[[)2 =

Here, we recognize the meaning of e. It is the excentricity of the yield ellipse( 2?).

Here, Hiblers model is stated for the sake of reference. In HIROMB, a modifi-
cation is implemented, however. As has turned out in a mathematical investigation
[?], it is appropriate to relax Hibler’s rigid plasticity by admitting that the yield
curve is exceeded. For sufficiently large rates of strain, it should be possible to
attain any stress. In practice, such should be the case only in a neighbourhood of
the yield curve, however.

Thus, the constitutive equation of HIROMB’s ice model is viscous-viscoplastic
rather than viscous-plastic. We take some very small non-dimensional x > 0 pa-

rameter and let

o 1+nmax(AA071,O) P

C - . max(A,A) 2 (73)
n= e—zC

Compared to ( ??), we now have

(01 + 5+ (eon )

A A+ rmax(A — Ay, 0) P
N AO maX(A, Ao) 2

(74)

As shown in [?], introducing the parameter x as a (minor) modification of Hibler’s
model amounts to regularizing the ice mechanics problem.

As a closure of the ice dynamics model, there are two budget equations for
areal density and compactness. In the compactness equation, a ridging term (sink
of compactness) is involved to prevent it from exceeding unity.

oh 1, 0(uh) = O(cos ¢pvh)
o T Resson T 0o

) =0 (75)

0A 1 0(uwA)  O(cospvA)
o Reso o T o0
While the total mass of ice, given by its areal density A is conserved under
transport, compactness in general is not. To prevent local compactness from ex-
ceeding unity, as could happen in cases of convergence, a sink term, the so-called
ridging function R, appears on r.h.s. Keep in mind that there is no fundamental
principle on which ( ??) is based.

)=R (76)
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4.7 Thermodynamics of sea ice

Growth and melting of sea ice is controlled by the heat budget of the ice cover. In
the model, the ice is considered as a plane slab. Its bulk heat budget is given by

o dT dh

Q+Q —Qcphdt QLdt

where the following notation is used: () atmospheric heat flux at ice surface, )°

oceanic heat flux at ice bottom, ¢ ice density, ¢, specific heat capacity of ice, h ice

thickness, 7 mean ice temperature. Both (external) heat fluxes are taken positive

if directed into the ice. On the left-hand side of (??), there is the heat input into the

ice while the contibutions to r.h.s come from heating/cooling and phase change by
growing/melting.

As with surface temperature in modelling atmospheric heat flux over open
ocean, the ice temperature is part of the problem, i.e. to be determined. We have
to obtain both temperature and thickness from (??).

To tackle the problem, we need more insight. On the vertical, let the ice slab
be an interval, say zp < z < zg so that h = zg — zg. The internal redistribution
of heat due to conduction is governed by the equation

or 0 _,

(77)

Qcpa + 9, (78)
Vertical integration gives
dT
Qcpha +Qs— Q=0 (79)
On combining with (??) we get
dz dz
(Q+Q%) — (@5~ Q) = —oL(~—" — —7) (80)

It is easy to separate latent heat budgets at surface and bottom, respectively.
At the surface we get

dZS
¢ = —plL—= 81
Q+Q ol— (1)
while at the bottom p
z
~Q5+ Q"= oL—" (82)

Both balances follow one and the same pattern: The inequality (jump) of heat
fluxes at the interfaces (ice-atmosphere, ice-ocean) gives rise to either growing or
melting.
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However, there is an important distinction, and we have to differentiate be-
tween surface and bottom.

At bottom, the ice temperature remains fixed. It is always held at melting
temperature, irrespective of any growth or melting. Dependent on lack or surplus
of heat flux into the interface, there is loss or gain of latent heat at the interface,
i.e. growth or melting.

At surface, the temperature is free to attain any value not greater than melt-
ing temperatue. It is unknown a priori. Conversion of latent heat is possible for
melting only - growth by freezing of water being excluded -, but melting occurs
only after heating up the ice to the melting temperature. Thus, there are unilateral
constraints to both surface temperature and conversion of latent heat. Yet, we only
have either heating/cooling or melting. These two distinct regimes are associated
with the following two disjoint cases:

1. Aslong as Ty p < Thperr Or Q + Q% < 0, equation (??) should be regarded
as a condition on the surface temperature which as well is found from Q+ Q% = 0.
Any change in the control is matched by adjustment of the surface temperature.

2. If both T,y f = Tinerr and Q + Q5 > 0, the melting temperature has already
been reached as an insurmountable obstacle, yet even more heat is supplied to the
surface. In this case, there is no reasonable surface temperature T, ¢ < 1o
that satisfies the flux balance @) + Q5 = 0. A defect of heat fluxes comes into
play which physically acts a source of latent heat. Equation (??) is recovered.
Complient with the physical meaning of the melting term, we always have % <
0. If it is impossible to satisfy () + ()5 = 0 with then melting is required to hold
the balance. (Incidentally, the budget then reduces to () = —QLdj—f.) Hence, in
the case Ty, = T and Q + Q% > 0, equation (??) gives the rate of surface
melting.

We prefer to tackle (??) in the form

T
Q-+ Qi = oeph S — 1%
where use was made of (??). On adding (??) and (??), we again arrive at the
commencing heat budget equation (2?).

To close the system at this point, we refer back to some relationship between
mean (bulk) temperature and surface temperature, as comes from a hypothesized
temperature profile within the ice slab.

As explained, use is made of eqn. (??) to control both ice temperature changes
and surface melting. Thus, equation (??) governs both 7" and zg. But, at any time,
only one of these quantities is actually affected.

In standard papers, (??) is found without the heat storage term. But we have
found that it is convenient to include as it helps damp rapid fluctuations of the
ice temperature which otherwise are common-place. In a quasi-static balance the

(83)
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ice temperature sensitively responds to changes of the atmospheric conditions.
By incorporating the full heat budget, the ice temperature is made more physical,
perhaps worth comparing with remote pictures, if available.

Once individual ice formation rates are calculated at surface and bottom, the
total change of ice thickness finally is % = dj—f — dj—f.

On leads (fractions of open water) there is also ice formation. As long as there
is any ice around, the sea surface temperature is held at the melting temperature,

and the latent heat budget is governed by

dh

o _ _ L—

(84)
the same principle as for ice formation at the bottom of the ice sheet.

At this point, it should be noted that there are three modes for computing the
atmospheric heat flux (): 1. over open ocean without ice cover 2. over open
water /leads) within ice cover 3. over ice sheets. Each regime is associated with
its special regime of the surface temperatures which also differ according to the
listed three states of surface.

The total ammount of ice formation on the ice fraction and the open water
water fraction is the weighted sum of both.

dh

dh
ahot = AE

dh
slal 1 - A . |lea 85
|stab + ( ) 7t ltead (85)
In calculating % |stan the slab thickness is assumed to be i/ A as if all the ice were
piled up on the covered fraction.
Following Hibler, the thermodynamic evolution of compactness is given by

dA A . sdh 1-A dh
E = % m1n<a|tot, O> + h—o maX(Ell@ada 0) (86)

5 Parallelization

Before the breakthrough of modern supercomputers with distributed memory and
a large number of processors working in parallel, ocean model codes were often
written in Fortran 77. However, to really utilise the efficiency of both shared
memory vector computers and distributed memory parallel computers, it has been
necessary to at least rewrite some of the code in Fortran 90.

Unlike atmospheric models, where all the grid points in the model are ac-
tive, ocean models contain a large number of land points. The computational do-
main therefore has to be partitioned into blocks containing a minimum of inactive
points.
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Accordingly, the task of parallelization the original HIROMB code has been
divided into two main parts; rewriting of the code to take advantage of the Fortran
90 features and dividing the model area into blocks with a minimum of inactive
points. A further part is the exchange of numerical algorithms especially designed
for distributed memory parallel computers.

For more details concerning the parallelization, the reader is referred to the
work by Tomas Wilhelmsson, Josef Schiiele and Jarmo Rantakokko, [?]and [?].

5.1 Modification of the code

To minimize the coding work, most of the original Fortran 77 code has been kept
intact except where new numerics has been added. The modification of the code
has mainly consisted of using pointers to switch between the blocks and different
grids. The Message Passing Interface (MPI) library has been used for communi-
cation between processors.

One of the most time-consuming parts in the code comes from the implicit
solver that is used for both the barotropic part and the ice module. Therefore the
old serial solver has been exchanged with a new distributed multi-frontal solver
written by Bruce Herndon [?]. New software for parallel architectures are becom-
ing available and in the test runs we also have done experiments with the multi-
frontal solver MUMPS [?]. However, for our special application, the performance
of the Herndon’s solver has shown to be superior.

5.2 Decomposition into blocks

In the computational domain that covers the whole 1 nm grid, only 26% of the
surface points and less than 10% of the volume points are active points. Thus
the main task of the decomposition is to cut off as much as possible of the non-
active grid points. This is achieved by decomposing the domain into blocks that
contain as less as possible of the land points. At the same time, there has to be a
limit on the number of blocks, because the more blocks the more work is spent on
overhead from switching block context and updating block boundaries. A careful
examination of how the performance rate depends on the distribution and number
of blocks is therefore necessary to arrive at the optimum block decomposition.
Because of the implicit treatment of the vertical diffusion it is an advantage if the
decomposition is done only in the horizontal. Then a further reduction is possible
by eliminating non-active deeper layers.

To carry out this procedure, we have used a newly revised version of the do-
main decomposition package of Jarmo Rantakokko [?]. Measurements described
in [?] shows that an inactive land point uses almost 40% of the time of an active
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water point. An outline of the decomposition algorithm is described below.

1. The domain is first split into halves and the two resulting blocks are shrunk
to remove inactive points.

2. The first step is repeated a number of times, where blocks with a lower than
average fraction of active points are split and then shrunk. In this manner
the fraction of active points is kept up in the blocks.

3. The blocks are distributed onto the processors with the recursive spectral
bisection (RSB) method. If the resulting load imbalance is above a given
threshold, blocks are split further until the load imbalance is below the
threshold.

4. Where possible, blocks on the same processor are combined and merged
together in order to reduce the number of communication points within each
processor.

5. As afinal step, the number of inactive points is reduced further by shrinking
the blocks where possible.

5.2.1 Decomposition of ice coverage

Even with the introduction of the new distributed solver for the implicit solution
of the ice equations, the ice module still accounts for a large part of the total ex-
ecution time as soon as the ice coverage reaches normal values. The dynamic
nature of the ice coverage requires a time-dependent decomposition which is dif-
ferent from the one for the water part. Special care also has to be taken to areas
where ice will form as the computation of the forecast proceeds. To manage this,
the area occupied with ice has been extended to include areas with a sea surface
temperature below a given value. Figure ?? shows an example of two decompo-
sitions of the same 1 nm grid, one for water and one for ice. Experiments with
equal and different number of blocks for the water and ice part have shown that
the best performance is achieved by using less blocks for the ice part compared to
the water part.

5.2.2 Data handling

A master processor takes care of the assembling, packing, and writing data and is
to some extent overlapping computations done by the working processors. This is
a very important point in achieving parallel efficiency. The Herndon’s solver [?]
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Figure 5: Two decompositions of the 1 nm grid for water on the left and for ice
on the right. The initial ice decomposition consists of 20 blocks on 16 processors.
(From [?])
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Parallel speedup

32

—_— Ideal
¥ One step

X 1nm grid
X 3nm grid

....... e 12nm grid X

59 17 33 65 129

Figure 6: Speedup as a function of the number of PE’s as given in Table 2?. Note
that the baseline for the 12 nm and 3 nm grids is 1.0 with 5PE’s. For the 1 nm
grid and the wholetime step, the baseline is 2.0 with 9 PE’s. (From [?])

requires the working processors to be a power of two, implying that with the mas-
ter processor included, 2" + 1 processors are used in the simulations. The master
processor is also responsible for updating and distributing external boundaries to
the working processors.

5.2.3 Parallel performance

Table ?? (from [?]) illustrates the performance obtained so far on a CRAY T3E-
600, and Figure ?? (from [?]) illustrates the parallel speedup for one full time step
without ice. A 48-hour forecast with the 1 nm grid included needs approximately
30 minutes CPU-time on 65 PE’s on a T3E with the ice excluded.

6 Conclusions
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und Hydrographie (BSH), Hamburg and the Swedish Meteorological and Hydro-
logical Institute. We are thankful to Jarmo Rantakokko who did the work with
partitioning the model area and to Tomas Wilhelmsson and Josef Schiile who did
the whole work with the parallelization of the code..
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12 nm grid 3 nm grid I nm grid Whole time step
#PE Time Speedup Time Speedup Time Speedup Time Speedup

5 0.67 1.0 5.75 1.0 Outof memory  Out of memory

9 040 1.7 298 1.9 28.97 1.0 32.98 1.0
17 0.34 20 1.60 3.6 14.34 2.0 16.31 2.0
33 0.22 3.0 0.92 6.2 17.75 3.7 8.87 3.7
65 0.18 3.7  0.56 10.3  4.11 7.0 490 6.7
129 0.17 3.9 047 12.1 2.48 11.7  3.15 10.4

Table 2: Timings for one whole time step using a dataset without ice from July
1, 1999. Herndon’s solver was used in all timings, except for the 1 nm grid and
whole step execution on the 9 PEs, which used the MUMPS solver due to memory
constraints. In the 129 PE timing, the 12 nm grid was only distributed onto 64 PEs.
(From [?])
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river mean runoff (m3s~1) | river mean runoff (m3s~1)
Kyroenjoki 44.00 | Pregola 87.00
Lapuanjoki 33.00 | Neman 674.00
Kalajoki 28.00 | Venta 65.00
Pyhéjoki 28.00 | Milaren 156.00
Siikajoki 41.00 | Nykpingsan 21.00
Oulujoki 260.00 | Motala strom 96.00
Iijoki + Kiiminkijoki 220.00 | Eman 28.00
Simojoki 38.00 | Morrumsén 27.00
Kemijoki 578.00 | Helge a 48.00
Torne adlv 388.00 | Ronne a 21.00
Kalix dlv 290.00 | Lagan 71.00
Réne dlv 44.00 | Nissan 40.00
Lule dlv 508.00 | Atran 46.00
Pite dlv 170.00 | Viskan 30.00
Skellefte dlv 160.00 | Randers fjord 100.00
Kokeméenjoki 221.00 | Gota édlv 530.00
Ume dlv 423.00 | Glomma 600.00
Ore ilv 35.00 | Oslofjord 300.00
Gide dlv 35.00 | Lagen 600.00
Angermanilven 480.00 | Nidelv 245.00
Indalsidlven 439.00 | Otra/Tovdalselv 400.00
Ljungan 140.00 | Firth of Forth 555.00
Ljusnan 230.00 | Humber/Tyne 290.00
Dalidlven 370.00 | Thames 100.00
Narva 357.00 | Seine 400.00
Luga 90.00 | Scheldt 150.00
Neva 2600.00 | Rhein/Meuse 2380.00
Kymijoki 368.00 | N Sea channel 90.00
Kasari 24.00 | IJsselmeer, Waddenzee 500.00
Pérnu 48.00 | Ems/Dollart 100.00
Salatsa 30.00 | Weser 450.00
Gauya 68.00 | Elbe 900.00
Daugava + Lielupe 723.00 | Ringkgbing fjord 125.00
Oder 522.00 | Kvina/Sira 300.00
Rega 21.00 | Lysefjord 100.00
Parseta 28.00 | Boknafjord 485.00
Vistula 1010.00

Table 3: Annual mean of river runoff
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