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SMHI, RMK 3 (1975) 1. 

A multilevel quasi-geostrophic medel för short range 
weather predictions 

Abstract 
A quite generally formulated multilevel quasi-geo­
strophic medel with possibilities to include second 
order terms in the vorticity equation is derived. The 
model includes friction, topography, latent heat and 
sensible heat. The treatment of the variable boundary 
condi tions, ·smoothing and elliptici ty control is de­
scribed. 

1. Introduction 

Operational numerical weather predictions have for 
some time been performed at SMHI by use of an inte­
grated quasi-geostrophic three-parameter medel. The 
operational system has been described by Bengtsson 
and Moen (1971). The importance of a fine horizontal 
resolution, especially for the vertical motion pattern 
and the release of latent heat, is demonstrated in that 
article. Large scale boundary errors are eliminated in 
the fine-mesh medel by the so-called grid-telescoping 
technique implying insertion of lateral boundary values 
produced by a course mesh, large area medel. 

Recently Moen (1974) has studied the effect on a de­
veloping cyclone of two possible improvements of the 
quasi-geostrophic model, namely a larger vertical re­
solution and the use of the vorticity and the thermo­
dynamic equations in their complete form. It is shown 
that medels with a h i.gh vertical resolution have a 
significantly higher instability for meteorological 
disturbances of short wavelengths. In order to resolve 
this instability about 5 vertical levels and 150 km 
horizontal gridlength are essential. The inclusion of 
small, frequently neglected terms in the vorticity and 
thermodynamic equations, although not energy consistent, 
adds features to the development of individual cyclones 
which are typical for the real atmosphere. The main con­
tribution of these terms isa deepening of the cyclones 
and weakening of the anticyclones at the surface level. 

A medel with 5-6 vertical levels increases the possibi­
lities to describe different mechanisms such as the re­
lease of latent heat, the effect of topography and the 
interaction between the free atmosphere and the boundary 
layer. 

The assimilation of the increasing amount of non-synop­
tic observations from satellites and aircrafts also re­
quires an analysis-forecast system with sufficiently 
high vertical resolution. 

A quite generally formulated prediction medel with pos­
sibilities to include second order terms in the vorti­
city equation will here be derived. 
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First thebasic system of equations, the finite dif­
ference form and the method of solution will be de­
fined without specification of the lower boundary con­
dition and non-adiabatic heating. After that different 
physical effects, such as latent and sensible heating, 
friction and topography will be introduced. The treat­
ment of lateral bounda.ry conditions, smoothing and el­
lipticity control will also be described separately. 

The model will be used in routine operations and will 
probably undergo modifications, especially in the para­
meterization of physical effects, as experiences are 
gained. 

List of notations not defined in the text. 

A diffusion coefficient 

cp specific heat at constant pressure 

E water vapor pressure at saturation 

f Coriolis parameter 

g gravity 

kE exchange coefficient 

L latent heat 

p pressure 

p 5 .. standard surface pressure 

Q rate of heating 

q specific humidity 
_.,_ -"- at saturation 

R gas constant for dry air 

R 
V 

_.,_ -"- -"-

s static stability 

t time 

water vapor 

T 5 sea surface temperature 

Z height toa pressure surface 

~ geopotential 

w vertical velocity in the p-system 

w streamfunction 

p density 

e potential temperature 

t; relative vortic.ity 

X velocity potential 
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2. 

2.1 

T'1.e basic SXJ.:,bem 

The system of equa~i91l2. 
The governing equations are the vorticity equation and 
the thermodynamic equation in the p-system 

((1) * + J (1j;; 7; + f) = f ~ + w 

(2) a atj) + J ( 1f, ; ~. + R 
Q at ( ap> sw = -ap; cpp 

where 

(3) w l; 
dli.) ai;: Vw•V (g) Vx•V(r, + f) = 8p - !Jj öp - -ap 

isa sum of usually neglectcd terms of second order 
magnitude. 

The first terE in 'i'i des..;rH:,es , tog~ther with f ~~, 
the generation of vor:cicity by ho.rizontal divergence. 
The second tern1 in t·J rep:rese.::1ts generation of vorticity 
by vertical aC::ve c-tion ,. 'l'he third t erm is the so-called 
twisting term, descrE)ing the 11 tilting 11 of horizontal­
ly oriented ccrnponen.ts of vo:ctici ty into the vertical 
by a ..1.on-uni:co:::m vcrtical motion field. ~nhe last term 
in W expreEsec t.he advec·::.ion of vor'cici ty by the di­
,rergent p,2:_rt: of tlw wind. The ve loci ty potential x can 
be solved frcrJ the. cc::1tinuity equation. 

(4) = -

The cnlv n0glecte<l ~ex~ in the vorticity equation is 
the div~r;e;t pcrt of tha twisting effect, the magni­
tude of whish is c~a order smaller than all other terms 
in N. 

In the tlle::::-raodynar.1.:.c equation (2) advection of tempera­
ture by t.h0 divergent wind ls neglec ted and the static 

b . 1 . J 2<t ae . sta i .:i..ty ! s = -J "än a; :1.s assu.med to be a function of 
pressure only. ~ P 

The rate of ncn-adiahatic heating, Q, will be defined 
in the following sections . 

The relation bet~een the mass- and the windfield is 
given by the Lalanc2 equation 
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In• the therrnodynam.ic equation the relation 

C6) .ll = f aiµ 
ap o ap 

where f 0 isa constant, is used and equation (2} . can 
be-~written ... as 

The two equations (1) and (7) now forma closed system 
in 1jJ and w since ~ can be expressed in w and x. in w. 

The atmosphere is divided inte N arbitrarily placed 
pressure levels between the top of the atmosphere and 
100 cb. At these levels the streamfunctions ljJn are de-

fined. To minimize the vertical truncation error, wn, 
sn and Qn are placed on levels half-ways between ~n­
levels. 

{ W1 S1 Q1 

{ . l/11 

{ . W2 S2 02 
{- - - - ; 2 - - - - -

I 
j 
I 
I 

6~ { WN SN QN 

L\pN ·{- - - - ilJN- - - - -

ÅPN+l {_ wN~l- 8 N+l_ON+l _ 

åpN+l { WN+l 

p=O cb 

p=lOO cb 
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The boundary conditions are 

(8) { 
t/J = constant at p=0 

.,:+l prescribed 

s. 

The commonly used upper boundary condition in similar 
medels is w=O. However, to be able to use centered dif­
ferences a tP-level is neede at p=0. 

Comparative computations with the two different upper 
boundary conditions have shown no differences for short 
and medium-long waves, whereas only small differences 
for ultra-long waves have been obtained. 

The level where wN+l is prescribed does not coinside 
with the earth surface which is the case in mast other 
models. The present arrangement can be justified by 
noting that the constraint on w is best valid at the 
top of the boundary layer. The lowest w-level can thus 
be placed at the mean position of the top of the bound­
ary layer. 

Our prognostic variables can be expressed by two vec­
tors 

(9) f= 
1/J 1 

t/J 2 

I 
I 

JN 

.,_ .. -
1/l/W -

We first assume that W=0 and apply equation (1) on 
the tP-levels and equation (7) on the w-levels. 



' . 

,., 
; 

. J ... ' 

I 1 .. r.' 
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For n=l , 2 •• •• .• N we get 

where 

J'n = J(t;n + f, i/J n) 

~ Jn = J ("t/Jn, l/Jn-1) 

1 
an = 

Apn+Apn+l 

!Sn 
1 = 

2sn~Pn 
I 
I 1 ! ö.n = 

cpsnpn 
l 

,. 

To be able te write this system of equations in a 
compresse_~ form we introduce the following vectors 
(in addition to ~ and w) 

...., 
Jl Jl 

l"J 

J2 J2 
....., 

.r = . .r = 

,.., 

J JN JN 

0 

0 

Q = CA> . = L 

0 

WN+l 

-

6. 

Note that J 1 = 0 due to the upper boundary condition. 
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The system (10) can now be written as 

A, 8, C., I, E and P are all NxN matrices • 

. A• 

B• 

0 



} :1. 

:' ~ . 

.... . 

·,. 

. .... 

. ;· 
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\. \ 

c= 

0 

D•-

0 

E= 

0 

F• 

0 
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The forcing furiction vector Hin equation (11) is 
computed with W=O. In the case w,o a vector W is 
added to the vector H, with · 

a 
Wn = anr;n <wn+l-wn) -,.<00n+l+wn) (l';n+l-i;n-1> 

. (13) 

Note that z-; 0 = Vw0 = O. 

Xn is solved from 

9. 

Due to the lower boundary condition, the stream­
function at the level N+l can be solved directly from 
the thermodynamic equation 

(15) 

2.2 Finite differences 
The equations are mapped on a polar-stereographic map 
with a map scale factor m. A rectangular cartesian grid 
with a grid length, d, is applied on the map and all 
derivatives are approximated by centered differences. 
The following finite difference operators are intro­
duced: 

,2a = ai+l .+a. l .+a. ·+1+a .. l-4ai . ,J 1- ,J 1,J 1,J- ,) 

il(a,b) = (ai+l .-a. 1 .) (b. ·+1-b· . 1> .-,J 1- ,J i,J 1,J-

- (a .. ·+1-a· . 1> (b.+l .-b. 1 .) i,J i,J- 1 ,J 1- ,J 

+ (ai ·+1-a· · 1> (b. ·+1-b· · 1> ,J 1,J- 1,J 1,J-

where i and j are grid point indices and T is an index 
for time. 
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If the length of a - time step is ~tandµ= 
(m/d} 2 we can write 

v2 :::: µY2 

J ~ t il 

Va•'vb::: l ,a•Yb 

10. 

Fora normal time step t=2. For the first time step a 
non-centered time step is needed. The arrangement is 
shown in the following figure. 

3. (i::=2) . · 47rr=2) 5. (e:=2) 

2.~°Ce:=l} 

T=o l 2 3 

- ', I 

4 

By introducing the finite difference operators in (11), 
(12), (13}, (14} and (15) we get the following set of 
algebraic equations. 

(16) 

(17) 

(18) 

(19) 

f f o A • ( bi ,i. ) = E fl t f ,J 
µ · T~ 4 r 

...;, 

+ ff •• ,. 
0 

4f 4fµan t,tL] = H - C•Q_ + µ 





SMHI, RMK 3 (1975) 11. 

(20) 

2.3 Uncoupling of the system 
The equations expressed by the vector equation (16) · 
are coupled together by the matrix A. As it stands, 
the system can not be solved for åT$ by solving each 
åT~n separately. However, by a matrix transformation 
the matrix A can be transformed to diagonal form. De­
notinq the transformation matrix bv Tand its invers 

l 

by T-1we can w~·ite 

A 
1 

A 

T- 1 •A•'P 2 = . . 
A 

0 N 
or 

X 
1 

• %-1 A = !t .• A 

(21) 2 . . 
A 

0 N 

It can be shown that Ai{i=l, 2 ••• N) are the eigenvalues 
to the matrix A and the columns of ~ are the correspond­
ing eigenvectors. 

By introducing (21) in the system (16) and multiplying 
from the left by ~-l we get 

( 22) 
ff 

µ 

A 
1 

A 
2 

0 

• 
A 

0 N 

•(6 ••>=Il* T 



i 
<c • 
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where the star ( *) indi.cates new variables achieved 
by the transformation 

The new variables consist of linear combinati.ons of 
the eld variables and can not be assigned to specific 
levels. 

The system (22) is now unco~pled and can be solved 
separately for each component 6 ~ *, (n=l, 2, ••. N). t n • 
.6-r"' can be obtained by the backward transformation 

2.4 Method of solution 

Each Helmholtz or Poisson equation, e.g. equations 
(16) anc1 (19) and the finite difference form of equa­
tion (5), is solved by a standard method of succes­
sive overrelaxation. If such an equation is formally 
writtenas 

{25) ,~a - q•a = b 

where a, band q are functions of i and j, one inte­
ra.tion step {v-+v+l) can be written as 

{26) 

(v+l) a. , 
l. I J 

(v) - a. I + 
.1. , J 

a [a(v) + 
4+q . .. i+l,j l , J 

a(v+l) + 
i-1, j 

(v) (\!+l) {V) (\l) ~ + a . . +l + a . . 1 - { 4+q . . - a . . - b. . i , J i , J- i,J . 1,J 1,J 

a is the overrelaxation coefficient, mainlv depending 
upon the size of the grid area and the magnitude of q. 
The sequence of iterations is truncated when the va-
lue of the paranthesis is less than a prescribed tole-

rance. The first guess, a~,j' is in most cases evaluated 

from the foregoing timestep. 

The sequence of computations for one time step can be 
described in the following way: 





:--,,compute the forcing functions HT 
Transform to {H*)T 

Solve for ATf* 
Transform to AT. 

-r+l Step forward: f = 

Compute LiTljJN+l 

St f d ,1,T+l 
· ep o:rwar : "'N+ 1 

Solve ,,/ 

f W-terms neglected 

Solve x! 
Compute AHT 

Transform to (AH*)T 

Solve for Li•• - Li•• -r""new T 

Transform to ATtnew - LiTf 

13. 

r 
One time step 
with w-terms 
neglected 

l 
l 

Corrections to 
the solution 
for the effect 
of w-terms 

Correction ,-r+l = ,-r+l +Li• - Li ♦ new TTnew T 
l 

Correction (•1•-r+l) = 
"'N+l new 

Add 1 to T 

Next time step 



~. ., : .. -r.~:i. 

,·. 
1 



SMHI, RMK 3 (1975) 14. 

3. Friction·and to2ography 

In t .he basic system (equations 16, 18, 19 and 20) '• · 
wN+l at the lowest level is left undefined and has to 

be prescribed each time step. wN+l is assumed to be 

controlled by two effects: vertical motion resulting 
from the friction of the flow against the surface and 
the vertical motion forced by mountain obstacles. 

It is assumed formally in the medel that the surface 
of the earth coincides with the pressure level PN+l 

(1000 mb). A more realistic assumption would lead to 
coefficients an as functions of x and y and the trans-

formation of the system into diagonal form would be im­
possible. 

The effect of a· surface not coinciding with the level 
PN+l can, however, be simulated by introducing it as 

extra forcing functions in the right hand sides of 
the equations. 

The vo:i;:ticity equation (10} for the levels N, N-1 
N-2 can be written as 

(27) 
,H;;N-2 

fan-2<wN-l - wN-2) JN-2 - = .at 

(28) 
ar;;_l 

fcxN-l(wN WN .... l) JN-1 at - - = 

(29) 
at;N 

fwN ( WN) JN + faNwN+l ät - - = 

and 

We restrict the mountains to be lower than the level 
(N-2). We assume that the forced vertical velocity, 
wL, at the real surface of the earth can be expressed 

as 

where p 5 is the standard surface pressure and kisa 

constant. The first term describes the main orographic 
influence and the second term the effect of friction. 
A value .for k can be estimated from the Ekman theory. 
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we cons.ider three cases: 

a)I Ps > PNj 

where 

or, after rearrangement 

Comparing with equations (29) and (30) we see that 
wN+l at the time T can be approximated by 

(31) 

( 't 't -r-1 
\wN+l = (1-ö 1 )wL + o1wN and 
I 

j wI= (alv~+ a2V~+1>•Vps - k(al~N+ a2tN+l> 

PN+l-ps 
al = 

PN+l-pN 

a2 
Ps-PN 

= 
PN+l-pN 

Ps-PN-0.5 . 

Ps-PN-1.5 

15. 



, ·.,! 

.f: · . 

\. 
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Equation · (28) should read 

In this case a forcing term must be added to equation 
(28) 

( 32) 

l 
We further assume that 11 inside 11 the mountain there is 
no vertical variations in w, which is approximately 
fullfilled if 

(33} T-1 ::::: w 
N 

0 = ps-pN-1.5 
3 Ps-PN-2.5 
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In a similar way we find the extra forcing function 
to equation (27) 

6HN-2 = f~N-2 (l-Ö3)wL + ö3wN-2 - WN-lj r 
T [ T T-1 -r-17 

w~ = (alv~-2 + a2v;_1>•Vps - k(alr;~-2 + a2r;~-1> 

(34) ' 

al 
PN-1-Ps 

= 
PN_l-PN-2 

Ps-PN-2 
a2 = 

l PN-1-PN-2 

If we assume no vertical variation of w "inside" the 
mountain, the following approximations can be made 

f öH~-l = 
(35) 

l w~+l = 

With these relations for wN+l and the extra forcing 

functions ~HN-l and ~HN-Z for the three different 
cases, the vorticity equations (27), (28) and (29) 
can be left untouched and the equations can formally 
be treated in the same way as described in section 
2. 

4. Heating from ocean~ 
The adiabatic models provide the major characte­
ristics of middle latitude disturbances. However, 
the effects of diabatic heating are by no rneans in­
significant. Differences of arnplitude and phase velo­
city of 10-20% are possible during a day or two as a 
result of sensible heat exchange or latent heat re­
lease. 

The most effective source of sensible heat is the 
ocean area. The turbulent flux of heat per unit area 
from the ocean to the atmosphere through the bound­
ary layer can be estimated by the formula 

(36) FQ = p 0 kEjv0 1cp(T9 -T0 ) 

where kE is the exchange coefficient and p0 is the 
density at 1000 rob. 
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In conditions of near-neutral stability kE = l.25•10- 3 

is fairly widely accepted value if (T -T) ~ O. 
(Robinson, 1966). s 0 

The heat supplied to the atmosphere in this way is 
transported upwa~ds by turbulent or convective mo­
tion. Since these processes are not described by the 
model, we have to assume a vertical distribution of 
the rate of heating per unit mass, Q(p). The rela­
tion between FQ and Q(p) is 

1 Po 
(37) F = - J Q(p)dp 

Q g 0 

If we put 

(38) _Q (p) 

the magnitude of the coefficient A1 can be, estimated 

bv a vertical integration of the formula between Pso 
and p 0 anda comparison with equation (36). 

With standard values for p0 , kE, cp and g 

The modifications of formula (38) will be introduced. 
A coefficient A2 wifl be used to guarantee a heat ex-

change even if the wind is zero.Similar to Benwell et 
alii (1971) we will also try to simulate the increase 
of the exchange coefficient kE for unstable condi­
tions by assuming that 

kE = 1.25•10'.'"" 3 [1 + A (T ·-T ~ 3 s oj 
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The final form of Q(p) will then be 

(39) rQ(p) = A{lvol + A2] (T9 -T0 ) [1 A3. (Ts-To>] 
p-pso 

+ ( ) 
Po-Pso 

{:· 
> T 

0 

~ >pso 
l 
' i Q (p) = 0 over land areas and 
\ over ocean areas if T ~ s To 

1· Al = 0.6•10- 3 

= 10 < A2 
•, 

I 
0.8•10- 1 I A3 = 

\ 

The wind speed I v0 I at the ocean surface is computed 

from ~N+l and the ocean surface temperature, T 5 , is 

taken from monthly mean values. 

The most difficult parameter to estimate in equation 
(39) is the air temperature at the ocean surface, T0 , 

since it must be extrapolated from stream functions 
on the levels N-1, N and N+ 1 • 

Assume that the vertical variation of the temperature 
in the two lowest layers can be described by 

(40) T = a + b ln p 

The hydrostatic equation can 
then be integrated in the two 
layers and the coefficients a 
and b evaluated. 

-\---­
~ ---\--

'"" 7777777/'t,77 
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5. 

5.1 

Putting-p ::::: 
PN+l i n equation ( 40) we get 

TN+l ::: aN+l ZN+l + aN ZN + aN-1 2 N-l = zx 

where 

( 
- g_, 1 + 1 

aN+l ::::: 
R" 

ln(PN+l) lntN+l) ' ' ' 
PN-1 PN 

....; 

ln tN+l) 

I - .s PN 
~-1 = R PN PN+l 

ln(--)•ln(--) 
' PN-1 PN-1 ' ! 

\ 

The predicted parameters are ~N+l' WN and WN-l and 

we use the balance equation 

(4 2 ) V 2 z . = l V.. ( f V ljJ ' ) ( i = N + l , N , N-1 ) 
. l. g J. 

We finally get 

where 

Release of latent heat 

Humidity forecast 

The change of the specific humidity, q, in the atmo­
sphere can be described by the following equation 

(44) 1g = - V•Vq - w ~ + Av' 2 q + E - P at ap 

where A isa dissipation coeff{cient 
E is the addition of humidity due to evapora­

tion 
P is the loss of humidity due to precipitation 
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For short range predictions evaporation is of minor 
importance and will be neglected. 

When no condensa tion occur s, P = O, and q . < q s, where 

qs is the specific humidity at saturation over a wate: 

surface. Equation (44) then takes the following form 

( 45) 23 = at q < q 
s 

In the case of condensation q = qs. The condensation 

continues as long as q 8 decreases. The condensation 

phase can be written as 

( 46) 

where 

d ( ) = 
~ 2-LJ.. + V•V( ) + w1Ll at ap 

By comparing eq. (44) and (46) we see that the loss 
of humidity due to precipitation is 

(47) 

The equations (45) and (46) can be combined toa 
single equation 

(48) it= -: V•v'q lg + AV 2 q 
dqs - w + Ö• --ap dt 

ö 1 when q = q 5 and 
dqs 

< 0 = dt 

ö = 0 otherwise 

It is found that, when applied to discrete levels 
in a prediction model, this equation is too slow t o 
predict the o n set of condensation . Condensation start: 
before q = q 5 is reached , possibly because of the dif· 

ference between saturation over water and ice surface: 
and also due to the fact that the clouds often are 
concentra ted to specific layers, with dryer layers 
between, in which case the mean humidity fora cer­
tain layer can be well below q, when condensation 
occurs . s 

We will thus use the criterion 

(49} q < E:•q 
s 

(E<l) 
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5.2 

Empirically E is f o und to be of the order 0.8. 

The last term in equation (48) will be removed and 
the effect of precipitation on q will be satisfied 
by the use of crite rion (49} at each time step. The 
prognost:Lc equation for humidity t hus reads after 
introduction of ' t he streamfunction and velocity po­
tential 

(50)l 
:q < e:q I s 

' 
Values for ~,(x , y,p,t},x{x,y,p,t) and w(x,y,p,t) are 
taken from the prediction medel described in section 
2. As upper arid lower boundary condj_tions for q will 
be used 

O above some level pK-l if wK > 0 

oqs 
~ at the level PN+ l i f wN+l < 0 

These 'two assump t ions t a ke care o f t he ver t ica l in­
flow from a bove and f r om below i nto the "wet part 11 

of the atmospher e . In the case of outflow (wK <~and 

wN+l > 0), ~i i s a pproximated with non-centered 

finite differenc e s inside t he nwet part". 

Precipitat:ion 

The total rate o f precipi tation c a n be expressed as 

(51) p = 

where 

( ö = 1 

1° 
= 0 

l f 
g p 

d g s o • dp dt 

when q = Eqs and 

otherwise 

dqs 
dt < 0 

dqs 
An expression for -- will now be derived. dt 
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Defining q 8 as 

(52) 0.622•E 
p 

23. 

where E is the water vapor pressure at saturation, we 
can differentiate 

(53) 

E is eliminated from (53) by the use of Clapeyron's 
equation 

(54) 

Thus 

(55) 

dE 
E 

1 
qs 

LdT 
= R •T 2 

V 

Assuming that the condensation takes place as a wet­
adiabatic lifting process, the first law of thermo­
dynamics can be used in the following form 

(56) dT RT 
CP dt - P w; w < 0 

dT dt can be elirninated from (55) and (56) and thus 

(57) 

(\ dqs - ~ 
d - F (p,T) 

j t qsT l Fx (p, T) = p 

dqs 
During condensation dt < O and w < O, so that 
F~ > O, or 

T< LR "'1275°K 
CpRv 

This o_ondition is always satisf ied in the atmosphere. 

dqs 
It follows that w < 0 can replace dt < O in equation 
( 48) • 
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5.3 

The totål rate of precipitation can thus be computed 
from 

p = ½ J 6 wFxdp 
P, r~ = 

1 when q = q 5 and w < 0 

0 = 0 otherwise 

(58) 

Heating due to condensation 

The nort-adiabatic heating due to condensation 

with the s ame criterion for ö as in (58) is introduced 
in the vector i in equations (11) and (12) and in QN+l 

in equation (15). Above a certain pressure level Px-l 
and Qn = O. 

5.4 Finite difference xorrn 

The ve rtical structure of the medel is illustrated in 
the fol l owing figure. 
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p=O 

- -------

ij,K-1 XK-1 
r 
I 

1 wK QK 
---------

ljJK XK 
( 
! 

l --------

ljJN-1, XN-1 

l ~ _wN __ ON __ _ 

{ _ "'N+l_ QN+l __ _ 

ljJN+l XN+l=O 
p=lOOO mb 7 -rr7·rT77T77T 

q =O 
0 

ql, P1 

q2' P2 

qN-K+l' PN-K+l 

~-K+2' PN-K+2 

~ 
l 
! 
! 

"wet part" 

\/ 

25. 
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Horizontal and vertical finite differences are now in­
troduced in equation (50): 

gj+l = gr l + EAt t *f (1/ln + 1/ln-l ;gj) + 

(60) + V(~T + XT 1 ) • Vq~ - 8AV 2 q1}-n n- J J 

l T( T T )] - ~n • wn q j +l qj-1 

where 

(F*)~ and (q5 )j can be computed from 

{61) . 

To reduce the nu.mber of arithmetic operations F* 
and;q8 in {6l)can be tabulated fora number of 

(p~,Tn)-combinations. 

Upper boundary conditions: 
~) W~ - < 0 

b) 

--. 1 - T T 
In eq. (60) on(qj+l-qj-l) is approximated 

1' T 
by aK(q2-q1) . 

'.['_ ' 0 wk,, 

q~ = O is used in eq. (60). 
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Lower boundary conditions: 

T 
XN+l = 0 and 

a) w~+l < 0 

~ aqs a p is approxima ted by ap = 

T 
T (qs)N-K+2 

qJ.-l) is replaced by -

T 
b) wN+l > 0 

In eq. (60) a~(qj+l 

by aN(qN-K+2 - q -K+l) 
N 

PN-K+2 

T qj_1 ) is approximated 

27. 

The non-adiabatic heating is computed from equation 
(59) and the total rate of precipitation can be expres­
sed as 

(62) 

The accumulated precipitation during one time step 
will then be 

(63) 

The accumulated precipitation durin~ a certain time 
period is achieved by adding all öTP during the 

period. In the case of a non-centered start of the 
forecast, the second value, t 112P, is neglected. 
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6. Smoothing and filte ring 

In the real atmosphere there isa flow towards the , 
shortest wavelength part of the energy spectrum. Since'· 
wavelengths shorter than 2h.s cannot be represented in 
a finite-difference medel, it is necessary to remove 
energy accumula~ed in the shortest waves in order to 
avoid a spurious growth of short waves, which in other 
case could blow up and obscure a meteorological fore-,. 
cast. 

Numerical operators which filter two-gridlength "noise" 
and only have small damping of longer wavelengths have 
been discussed by Shapiro (1970). By a repeated appli­
cation of a smoothing operator with a certain set of 
involved constants, one can achieve an ideal low-pass 
filter which does not change waves longer than 2h.s. 

However, if t4e smoothing is applied Only a small num­
ber of times during a forecast integration, of the 
order 10, a two-step smoothing is sufficient. Two­
gridlength waves are then removed and longer waves are 
slightly darnped at specified forecast lengths, say 
each sixth hour. 

A more frequent use of filtering, i.e. each time step, 
requires at least a 4-step version of Shapiro's method. 

The s~oothing operator is defined as 

a 1 j = a 1 j + J (l-S)f 2 aij + 

s2 
+ 4 (ai-1,j-l + ai-j, j+l + ai+l, j-1' + 

and is applied first with S =½and then with 
1 S = - 2 • The resulting response function for har".'"' ,.1. · 

monic waves, defined as 

has the following form 

(65) R(k,l) = [ 1-sin4 {~)]•~-sin'+(~}] 

where k and~ are wavenumbers in the x- and y-direc­
tions respectively. 

The response function for ~=O (or k=0) is shown in 
the following figure. 
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7. 

. s 

.o 
2 5 10 15 

The criterion of ellipticity 

The forecast equations are of elliptic type, which 
implies that the relative vorticity is restricted 
for negative values. Since there is no guarantee that 
the ellipticity criterion is fullfilled for .all grid­
points in the initial fields or that non-elliptic : 
points are produced during the integration due· to the 
approximations done, an iterative procedure is used · 
te modify a stream-function field so that the ellipti­
city criterion 

(66) v2 ~ + ~ > o 
is valid in all points of the field. 

Each point is tested with the following formula: 

where 

' 2 1'> = 1JJ ·+1 ,+t/J. 1 .+iµ. ·+1+1/J. . 1-4 •I/J. • , 1 ,J 1- ,) 1,J 1,J- 1,J 

E:0 = O.OOl•f. 
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8. 

If ö. < å, i/J •• is modified by .l.,J 

ip. . 
l., J 

,1, e:-ö k 
= 'I' j_ , j - '2µ"" • 

where kisa convergence parameter. 

This means that the vorticity increases by 2 (e:0 -ö) k / 

in the point (i, j) and decreases l:: _r O. 5 ( i::0 -ö) in _ the 

four surrounding points ( i+ 1 , j) , ( i-1, j} , (i, j+l) and 
(i, j-1). 'I'.his procedure guarantees that ö becomes po-. 
sitive in the point {i,j), but not necessarily in the 
surrounding points. The test must therefore be repeat­
ed for all points until the criterion is valid in the 
whole field. With a suitable choice of k the method . 
is convergent. 

k can be found empirically and is estimated to be. of 
the order k = 0.85. 

Lateral bou:w.::ary condi tions 

A simple lateral boundary conditl.on.,.which has been 
used in the operational three-parameter balanced medel 
at SMHI {see Bengtsson and Moen, 1971), is the pre­
scriptJon of the variation intime of the streamfunc­
tions, -. Al.jJ, ana · vorticities, i;, at all boundary points .. 

· A further simpl.ification is to compute the uorticities 
at the boundary from the streamfunctions by -use of non­
centered finite-differences instead of prescribing 
them. Since the purpose -is to take care of only the 
large-scale fluctuations at the boundaries this pro-· 
cedure seems to be satisfactory if some smoothing is 
used nea:r. the boundaries in order to damp out small­
scale errors. 

A forecast equation at an arbitrary level can formal­
ly be written as 

· (68) 
\7 2 (6,1/J) - q O (flT,J,) - E • f.t e HT 

(t,-r ~) b = (j)~ 

where the index b . refers to boundary points. 

If no information is !f'vailable at boundary points, _we _ 
have to assume that ~b = o. In the case of a limited 

area förecast, ~~- values from a larger area forecast 
can be used. · · 

For large-scale variations on the boundary a rather 
coarse resolution intime can be used, 6 er even 12 
hours . 
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Assume that ' streamfunctions 4'b' interpolated from the 

large area forecast, are available at the time t 0 and 
t 1 (t1-t0 = 6 Or 12 hours). 

~b(tO) ~t . ~b{tl) 

--+I -➔t-·----,.., --ti~---t-1-----1--+----1-fi-· -------+► t _____ ....,. 
In the interval (t 0 , t 1 ) the changes at the boundary 

can then be approximated linearly by 

(69) 

and 

will have the same value at every time step in the 
interval {t0 , t 1 ). 

•. 

By use of thi.s rel2.. tion we will now make a variable 
transformation of the prediction equation {68) in 
such a way that the new equa.tion has the boundary 
condition :o::'. 0. 

'ro achieve thi.s we define a var iable cp, independent 
of time and t.ime step, by 

•rhe forecast. equa tian ( 68} can then be transformed 
to 

{ 
V 2 (6T;) - q• (6'[~) 

(72) ,.._ 

( Ll-r iJ,) b = 0 

if åTi is chosen ta 

T = E: u ti.t • H 
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'rhe forward time step algoritm for tjJ is then changed 
to 

(74) tµT+l 

Equation (72) w1th the simple boundary condition 
" {öTW)b = O is solved every time step anda constant 

field c:•i6t 0 <j) is added to the solution. Note that qi 
is not zero for interior points but is on the other 
hand unchanged during the time interval. 

The ~-fields, different for different time intervals, 
can be prepared in advance, as soon as the large area 
forecast is computed, and the solution of these fields 
will therefore not delay t.he small area computation 
provided that this computation is performed at a later 
time. The ~-fields can be cornputed in the following 
way: 

Assume that the height fields Z(t0 ) and Z(t1 ) are 

avdilable on the larger area on an arbitrary grid. 

2. Solve the balance equation 

V 2 (}%) r ,., . ~ l lv 2 <~-~) - ;:!;_ v f • v c~) 
_,. J.. at f ot 

. 3 1J; ' 3. Interpol1.te {ät) to the small area grid and pick 
ta iµ out boundary values \df)b. 

4. Solve equation (71) and store the resulting qi­
field. 

5. Repeat the procedure for all time intervals and 
all pressure levels. 

The stored 4)-fields are then used during the computa­
tions on the small area as earlier described. 

An incons.istency can arise. at time t=O if the Z-f ield 
on the 1arge and small area is different on the small 
area boundary. 'I'his can be avoided if the small area· 
initial fields {at t=O) are adjusted to the large area 
fields at. and near the boundar:ies so that 

2~mall(t=O) == zlarge{t==O} 
b 
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