PEER-REVIEWED INTERNATIONAL SCIENTIFIC PAPERS


Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D.,
Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R., Parajka, J., Toth,

Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevet, T., Merz, R., Parajka, J., Ruelland D. &
Vaze, J. (2015) Hydrology under change: an evaluation protocol to investigate how hydrological models
deal with changing catchments. Hydrological Sciences Journal, 60:7-8, 1184-1199:
DOI:10.1080/02626667.2014.967248

hydropower impact on Swedish river flow. In: Evolving Water Resources Systems: Understanding,
Predicting and Managing Water–Society Interactions Proceedings of ICWRS2014, Bologna, Italy, June

high resolution using the hydrological model S-HYPE. Hydrology Research 45.3, 349
-356. doi: 10.2166/nh.2013.010

natural variability in observed concentrations of nitrogen and phosphorus in river water. Environmental
Monitoring and Assessment, 186:5135-5152. doi: 10.1007/s10661-014-3765-y

Uncertainty in the Swedish Operational Hydrological Forecasting Systems. ASCE proceedings:
Vulnerability, Uncertainty, and Risk, 253-262. doi:10.1061/9780784413609.026. Published online:
July 07, 2014. Second International Conference on Vulnerability and Risk Analysis and Management
(ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA)
July 13-16, 2014 | Liverpool, UK. © 2014 American Society of Civil Engineers.

simulations using the HYPE model for Sweden vs. the Baltic Sea basin – influence of input-data quality

predictions in ungauged basins: set-up and evaluation of a model at the national scale, Hydrological
Sciences Journal, 57:2, 229-247.

doi:10.1016/j.atmosres.2010.09.013

the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial

century due to changing surface water volume. Hydrological Processes, Published online in Wiley
InterScience (www.interscience.wiley.com) DOI: 10.1002/hyp.7810.

T., Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G.,
by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water
Resources, 32, 129–146.

Huisman, J.A., Breuer, L., Bormann, H., Bronstert, A., Croke, B.F.W., Frede, H.-G., Gräff, T.,
Hubrechts, L., Jakeman, A.J., Kite, G., Lanini, J., Leavesley, G., Lettenmaier, D.P., Lindström, G.,
on hydrology by ensemble modeling (LUCHEM) III: Scenario analysis. Advances in Water Resources,
32, 159–170.


