

Martin Hansson

Swedish Meteorological and Hydrological Institute Oceanographic Laboratory 2015-07-27 Dnr: S/Gbg-2015-104

Report from the SMHI monitoring cruise with R/V Aranda

Survey period:2015-07-20 - 2015-07-27Survey area:Skagerrak, Kattegat, the Sound, the Baltic Proper and the Gulf of FinlandPrincipal:SMHI and the Swedish Agency for Marine and Water Management

SUMMARY

The expedition was part of the Swedish regular marine monitoring programme and covered the Skagerrak, the Kattegat, the Sound, the Baltic Proper and the Gulf of Finland. Data presented in this report has been subject to preliminary quality control procedures only.

The water temperature in the surface layer was essentially normal or somewhat lower than normal for the season. In the southern and southeastern Baltic Proper very high concentrations of phosphate and silicate were measured. The large inflow that occurred in December 2014 had now reached the northern parts of the eastern Gotland basin, but the oxygen levels in the inflowing water had now declined to below 2 ml/l. In the northern and western Gotland basin and in the western part of the Gulf of Finland the oxygen situation remains severe as completely oxygen free conditions are found at depths exceeding 70-90 metres. Acute hypoxia was found from 55 metres in the western Gotland basin. In the bottom water in the Arkona and Bornholm basins, and in the Hanö Bight, oxygen levels had declined compared to the previous sampling in June and acute hypoxia was experienced. Phytoplankton analysis showed relatively large amounts of cyanobacteria in the Baltic Proper, which could also be clearly seen in the surface water in the northern parts, as well as in the Bornholm basin. Surface accumulations were only observed in a small area in the eastern Arkona Basin. For a more detailed analysis of the phytoplankton situation, please see the separate report.

The next cruise is planned to start August 31, 2015.

PRELIMINARY RESULTS

The cruise, performed on board the Finnish research vessel Aranda, began in Helsinki on July 20 and ended in the same port on the 27th. The winds during the expedition were mainly weak to moderate. In parts of the Kattegat, the Skagerrak and the northern Baltic Proper however, the wind increased and on a few occasions were at gale force. Air temperatures ranged from 13-19°C.

To monitor the ongoing cyanobacterial bloom in the Baltic Proper extra sampling was performed at all stations and phytoplankton analyses were carried out onboard. The results of these analyses are presented in a separate report.

In the Gulf of Finland and the northern Baltic Proper four stations were visited that usually are sampled by the Finnish Environment Institute (SYKE). This extended monitoring is part of a new collaboration between SYKE and SMHI with the aim to i.e. increase the sampling frequency at Swedish and Finnish monitoring stations.

During the cruise, scientists from the Umeå and the Stockholm University collected water and net samples for analysis of methyl mercury and total mercury. The purpose was to investigate the concentrations and bioaccumulation of mercury in the Baltic and the Kattegat, but also to evaluate suitable monitoring methods. Also, a scientist from Tartu University performed a comparative study of three different analysis methods for pH.

The Skagerrak

The temperature in the surface water was somewhat lower than normal for the season and varied between 14.7 and 16.7 °C, highest near the coast. The surface salinity was normal; 25.6 - 31.7 psu, lowest at the coast. The stratification was found at 15-20 metres depth.

The nutrients in the surface waters were now completely depleted both at the coast and offshore, which is normal for the summer period. All nutrients showed concentrations below the reporting limit, or very low concentrations. The offshore phosphate concentrations varied around 0.02 μ mol/l, inorganic nitrogen (nitrite+nitrate and ammonia) was below the reporting limit, while silicate varied between 0.1-0.4 μ mol/l.

Fluorescence measurements showed that the biological activity was high just below the cline at the offshore stations, but that the activity was low along the coast. For more details see the separate phytoplankton report.

The lowest oxygen concentration in the bottom water was found at Släggö in the mouth of the Gullmar fjord.

The Kattegat and the Sound

In Kattegat, the temperature in the surface water was around 17°C which is somewhat lower than normal. The salinity in the surface layer was normal for the season and varied between 20.1 and 22.9 psu. In the Sound the salinity was higher than normal, ~16 psu. The halocline and the thermocline were found at 15-20 metres depth.

The concentration of nutrients in the surface water was low or almost exhausted, which is normal for the season. The phosphate concentrations varied between $0.02-0.05 \ \mu mol/l$ and the inorganic nitrogen was below the reporting limit. Silicate also showed low concentrations around 0.6-0.9

 μ mol/l. In the Sound, the concentrations of nutrients were normal except for silicate which showed lower concentrations the normal, 1.6 μ mol/l. Phosphate was 0.14 μ mol/l and inorganic nitrogen was below the detection limit.

De lowest oxygen concentrations in the bottom water were measured at Anholt E, 3.7 ml/l in Kattegat and 3.5 ml/l at W Landskrona in the Sound.

The plankton activity was low in the surface water, but at Anholt E a distinct fluorescence peak, dominated by dinoflagellates *Ceratium macroceros*. This spices are an indicator of North Sea water. For more details see the separate phytoplankton report.

The Baltic Proper

The temperature in the surface water was normal or somewhat below normal for the season and varied between 15.2 and 17.1°C. The surface salinity was higher than normal in the south western Baltic Proper and below normal in the north eastern parts. The salinity varied between 5.6 psu in the central Gulf of Finland to 8.3 psu in the Arkona basin. The halocline was found at 60-80 metres depth in the western and eastern Gotland basin, while it was shallower in the southern parts. In the Arkona basin it was found at 30-40 metres depth. The thermocline was found at 15-25 metres depth and was well developed.

The concentration of phosphate and silicate in the surface water was still over normal in the southern and in the south eastern Baltic Proper. At some stations the concentration had increased further. The high concentrations of phosphate and silicate in the surface waters could be attributed to the inflow, and nutrient rich bottom water consequently reaching the surface water. Another plausible cause to the high phosphate concentrations had declined and were now normal for the season. Phosphate concentrations varied between 0.10-0.47 μ mol/l and silicate between 8.8-17.4. The high concentrations were observed at BCSIII-10 in the south eastern Baltic Proper. The inorganic nitrogen was completely consumed down to 20 metres depth in the whole area.

To monitor the inflow to the Baltic Sea that occurred during December 2014 extra sampling points were visited in the eastern Gotland basin. Weak signs of the inflow were found at the Fårö Deep (BY20). The inflow was more clearly seen between the Fårö Deep and the Gotland Deep (BY15) as a thin bottom layer, where the maximum oxygen concentration had increased from about 0.9 ml/l to 1.4 ml/l.

In the western and northern Baltic Proper, and in the western Gulf of Finland, the oxygen situation was still severe. Completely oxygen free conditions were found at depths exceeding 70-80 metres. In the Gotland Deep, in the eastern Gotland basin, acute hypoxia was found at depths exceeding 70 metres and hydrogen sulphide was found at intermediate depths in a narrow layer at about 110-120 metres. Below the oxygen free layer, the deep water was still oxygenated, but the concentrations had declined to below 2 ml/l.

Acute hypoxia was found in the western Gotland basin from 55 metres depth. In the northern and eastern Gotland basin, the western Gulf of Finland and in the Bornholm basin, hypoxia was found from 70-80 metres depth. The oxygen content in the bottom water in the Arkona basin and the Hanö bight had declined further compared to the last measurements in June, and also here acute hypoxia was observed.

The phytoplankton analyses during the cruise shows that relatively high amounts of cyanobacteria were present throughout the investigated area. Cyanobacteria were visible in the surface water in the northern Baltic Proper and in the Bornholm Basin. Surface accumulations were only observed in a small area in the eastern part of the Arkona Basin. For more information about the algal situation, please see the separate phytoplankton report.

Figure 1. Transect showing the oxygen and salinity from the Sound to the Gulf of Finland.

SMHI

Tartu University

PARTICIPANTS

Name		Institute
Martin Hansson	Chief scientist	SMHI
Anna-Kerstin Thell		SMHI
Daniel Simonsson		SMHI
Jenny Lycken		SMHI
Ann-Turi Skjevik		SMHI
Örjan Bäck (Helsinki-l	Lysekil)	SMHI
Mikael Krysell (Lysekil-He	elsinki)	SMHI
Erik Björn		Umeå University
Anne Soerensen		Stockholm University

APPENDICES

Silvie Lainela

- Track chart
- Table over stations, parameters and sampling depthsMap showing bottom oxygen concentrations
- Monthly average surface water plots for selected stations
- Vertical profiles for selected stations

TRACKCHART Country: Sweden Ship: R/V ARANDA Date: 20150720-20150727 Series: 0460-0493

SMHI				* * * * *	Hydrog	raphic		Ship: 01	-Aranda					* * * * * *								Date	e: 2	015-0)7-27
Ocean e	ıh			* * * * *	series			Year: 20)15					* * * * * *								Time	a: 1	7:35	
Sor St	+ D	940	+ion	T.at	Lon	Date	Timo	Bottom	Secchi	wii	hd	Λir	Air	WCST	ם ססמסק י	No	тс	ΡO	чр	TN	NN	тл,	сч	т. р р) T C
no co	le r	bcu	61011	Bac	HOII	vvvvmmdd	hhmm	depth	depth	di	ve	temp	pres	elec t	- Hrhhoor	de	e a	hx	2 0	0 0	o h	0 1	i 11	ioo) <u>) </u>
110 000	0					<i>,,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uto	m	m	u1	vc	Comp	hPa	anae	d Cilvooa	uc	m 1	v	s 4	+ 2	3 4	t k (0 m	aNC	' C m
	i						acc					0	u	tu	motPBw		n i	a	P	PN	NN	Na	3 11	n	, <u> </u>
	2													hd	PrP 1		r - n	5	-			1	s	i	
0460 GF	X29EX	T BY2	3/117	N5950.5	E2450.3	20150720	1341	100		26	6	15.6	1000	1220	<	13									x
0461 BPI	IX60EX	T LL1	2	N5929.0	E2254.0	20150720	1940	84		30	7	16.3	1004	1130	- <	11	хx	- x	x -						x
0462 BPI	IX00EX	T LL1	5	N5911.00	E2144.81	20150720	2345	132		32	7	16.0	1007	9990	- <	15	x x		x -						x
0463 BPI	X00EX	T LL1	7	N5902.00	E2104.77	20150721	0207	169		32	3	15.6	1008	1130 :	с	16									x
0464 BP	X26BA	S BY2	0 FÅRÖDJ	N5800	E1953	20150721	0845	197	5	20	4	16.1	1009	1530	ĸx	17	хх	- x	хх	хх	хх	x - :	x -		x
0465 BP	X25EX	T BY1	9	N5737	E2010	20150721	1210	161	5	21	7	16.1	1009	2730	ĸ	17	х -								x
0466 BP	X21BA	S BY1	5 GOTLANDSDJ	N5720	E2003	20150721	1400	240	5.5	19	9	16.0	1008	2830	x -xxxx	19	хх	хх	хх	хх	хх	xx	x -		x
0467 BP	X21EX	T BY1	5 GOTLANDSDJ	N5720	E2003	20150721	1545	240	5.5	20	12	16.1	1007	2840	ĸ	5	хх	- x	хх	хх	хх	x - :	x -		x
0468 BP	X14EX	T BY1	1	N5704	E1950	20150721	1750	205		19	9	15.8	1006	2830	ĸ	17	x -								x
0469 BP	X13BA	S BY1	0	N5638	E1935	20150721	2115	144		26	11	17.0	1006	9990	ĸx	15	хх	- x	- x	хх	хх	x - :	x -		x
0470 BP	E12EX	T BY9	KLAIPEDA	N5607.5	E1917	20150722	0110	122		28	10	16.5	1009	9990	ĸ	14	хх	- x							
0471 BP	E11BA	S BCS	III-10	N5533.3	E1824	20150722	0540	91	7	25	8	15.9	1011	1530	ĸx	12	хх	- x	- x	хх	хх	x - 2	x -		x
0472 BP	BO7BA	S BY5	BORNHOLMSDJ	N5515	E1559	20150722	1330	90	7	22	5	17.1	1012	1220 :	k -xxxx	12	хх	хх	- x	хх	хх	xx	x -		x
0473 BP	BOGBA	S BY4	CHRISTIANSÖ	N5523	E1520	20150722	1640	92	6.5	21	4	19.3	1011	0020 3	кх	12	хх	- x	- x	хх	хх	x - :	x -		x
0474 BP	A03BA	S BY2	ARKONA	N5500	E1405	20150722	2230	47		23	7	18.0	1010	9990 :	kxxx	8	хх	- x	- x	хх	хх	x - :	x -		x
0475 BP	A02BA	S BY1		N5500	E1318	20150723	0225	46		28	9	16.2	1010	1530 :	кх	8	хх	- x	- x	хх	хх	x - :	x -		
0476 SO	х39ва	SWL	ANDSKRONA	N5552.0	E1245.0	20150723	0840	51	8	27	10	15.5	1010	1620 :	кх	9	хх	- x	- x	хх	хх	x - :	x -		
0477 KA	х29ва	S ANH	OLT E	N5640.0	E1207.0	20150723	1355	64	7	28	9	15.8	1011	1430 :	k -xxx	10	хх	хх	- x	хх	хх	xx	х –		x
0478 KA	IX50BA	S N14	FALKENBERG	N5656.40	E1212.70	20150723	1550	31	9	27	11	16.3	1011	1540 :	k -xxx	7	хх	хх	- x	хх	хх	x - :	x -		x
0479 KAI	IX25BA	S FLA	DEN	N5711.5	E1140	20150723	1840	84		29	12	15.7	1011	1240 :	ĸx	12	хх	- x	- x	хх	хх	x - 2	х –		
0480 SK	X23BA	S P2		N5752	E1118	20150723	2330	94		26	13	14.5	1010	9990 :	ĸx	10	хх	- x	- x	хх	хх	x - 2	х –		
0481 SK	X18BA	S Å17		N5816.5	E1030.8	20150724	0315	354		27	10	13.9	1011	1240 :	kxxx	15	хх	хх	- x	хх	хх	xx	х –		
0482 SK	X17BA	S Å16		N5816	E1043.5	20150724	0536	204	12	23	10	14.3	1011	1630 :	ĸ	14									
0483 SK	X16BA	S Å15		N5817.7	E1051	20150724	0716	136		25	10	14.5	1012	1240 :	ĸx	12	хх	хх	- x	хх	хх	xx	х –		x
0484 SK	X15BA	S Å14		N5819	E1056.5	20150724	0830	111		24	11	14.3	1012	1240 :	ĸ	11									
0485 SK	X14BA	S Å13		N5820.2	E1102	20150724	0917	99		23	9	14.6	1012	1740 :	ĸx	10	хх	- x	- x	хх	хх	x - 2	х –		
0486 FI	G27BA	S SLÄ	GGÖ	N5815.5	E1126.0	20150724	1105	75	9	23	9	15.1	1012	1420 :	kxxx	9	хх	- x	- x	хх	хх	x - :	к –		·
0487 KA	X29BA	S ANH	OLT E	N5640.0	E1207.0	20150725	0240	64		10	8	15.7	1009	4420 :	k -xxxx	10	хх	хх	- x	хх	хх	xx	х –		x
0488 BP	H05BA	S HAN	ÖBUKTEN	N5537	E1452	20150725	1900	80		23	11	18.3	997	8640 :	ĸx	11	хх	хх	- x	хх	хх	x - 2	х –		x
0489 BP	K01BA	S REF	M1V1	N5622.25	E1612.1	20150726	0150	21		19	5	14.3	997	9990 :	k -xxxx	5	хх	хх	- x	хх	хх	xx	к –		·
0490 BP	EOOEX	т 4.5	NE ÖLANDS SÖDRA	N5610.06	E1659	20150726	0514	58	7	20	11	14.7	997	1640 :	к	9	хх	- x							·
0491 BP	IX45BA	S BY3	8 karlsödj	N5707	E1740	20150726	1100	110	5	22	10	15.9	997	1540 :	кх	14	хх	- x	хх	хх	хх	x - :	к –		· - x
0492 BP	IX38BA	S BY3	2 NORRKÖPINGSDJ	N5801	E1759	20150726	1705	202		23	12	15.7	998	1340 :	кх	17	хх	- x	хх	хх	хх	x - 2	к –		·
0493 BPI	IX35BA	S BY2	9	N5853	E2019	20150727	0208	170		22	15	14.8	999	2850	к	16	x -								x

Bottom water oxygen concentration (ml/l)

Country	:	Finland
Ship :	:	Aranda
Date :	:	20150720-20150727
Series :	:	0460-0493

STATION P2 SURFACE WATER

Vertical profiles P2 July

STATION Å13 SURFACE WATER

Vertical profiles Å13 July

STATION Å15 SURFACE WATER

Vertical profiles Å15 July

STATION Å17 SURFACE WATER

Vertical profiles Å17 July

STATION FLADEN SURFACE WATER

Vertical profiles Fladen July

STATION W LANDSKRONA SURFACE WATER

Vertical profiles W Landskrona July

STATION BY1 SURFACE WATER

Vertical profiles BY1 July

STATION BY2 SURFACE WATER

Vertical profiles BY2 July

STATION HANÖBUKTEN SURFACE WATER

Vertical profiles Hanöbukten July

STATION BY4 SURFACE WATER

Vertical profiles BY4 July

STATION BY5 SURFACE WATER

Vertical profiles BY5 July

STATION BCS III-10 SURFACE WATER

Vertical profiles BCS III-10 July

STATION BY10 SURFACE WATER

Vertical profiles BY10 July

STATION BY15 SURFACE WATER

Vertical profiles BY15 July

STATION BY20 SURFACE WATER

Vertical profiles BY20 July

STATION BY32 SURFACE WATER

Vertical profiles BY32 July

STATION BY38 SURFACE WATER

Vertical profiles BY38 July

STATION SLÄGGÖ SURFACE WATER

Vertical profiles Släggö July

STATION N14 Falkenberg SURFACE WATER

Annual Cycles

Vertical profiles N14 Falkenberg July

STATION REF M1V1 SURFACE WATER

Vertical profiles Ref M1V1 July