

Martin Hansson

Swedish Meteorological and Hydrological Institute Oceanographic Laboratory 2016-01-16 Dnr: S/Gbg-2016-008

Report from the SMHI monitoring cruise with R/V Aranda

Survey period:2016-01-07 - 2016-01-15Survey area:Skagerrak, Kattegat, the Sound and the Baltic ProperPrincipal:SMHI and the Swedish Agency for Marine and Water Management

SUMMARY

The expedition was part of the Swedish marine monitoring programme and covered the Skagerrak, the Kattegat, the Sound and the Baltic Proper. In Kattegat the winter pool of nutrients were mapped. Data presented in this report has been subject to preliminary quality control procedures only.

The temperature in the surface water was above normal in the Baltic Proper. The concentrations of nutrients were generally normal for the season in Skagerrak and Kattegat. In the Baltic Proper the concentration of phosphate was elevated in the western parts while the silicate concentration was well below normal in the southern parts.

The effect of the inflow in December 2014 could not be detected further north than the station BY20 in the northern part of the Eastern Gotland Basin. At the station Gotland Deep BY15, hydrogen sulphide was again present in the bottom water. In the Western and Northern Gotland Basins the oxygen situation remains very serious as anoxic conditions occurred at depths exceeding 70-100 meters. Hypoxia in the bottom water was detected in the Hanö Bight, the Bornholm Basin and in the south eastern Baltic Proper.

The next monitoring cruise is scheduled to start on 15 February.

PRELIMINARY RESULTS

The cruise was operated aboard the Finnish research vessel Aranda. It commenced in Helsinki on January 7 and ended in the same port on January 15. The winds during the expedition were predominantly southeast to northern, and varied in strength from brisk to gale force. Air temperatures ranged between -14 and +4 $^{\circ}$ C. In the Kattegat and the Sound the winter pool of nutrients was mapped. Beyond the ordinary 4 stations, 12 extra mapping stations were visited.

The Skagerrak

The temperature of the surface water was normal for the season and varied between 2.6 and 4.6°C, lowest near the coast and high in the offshore areas. The salinity in the surface layer was also normal for the season and varied between 26.2 and 30.8 psu. The stratification, both the thermocline and the halocline, was weakly developed.

The nutrients in the surface showed typical values for the season, except for silicate which showed concentrations above normal in the central parts. In the surface water the concentration of phosphate ranged between 0.52 and 0.66 μ mol/, inorganic nitrogen (nitrite + nitrate) between 5.7 and 6.8 μ mol/l, while silicate varied from 7.1 to 14.5 μ mol/l.

The lowest oxygen concentrations, 4.5 ml/l, were found in the bottom water at Släggö in the mouth of the Gullmarn Fjord. Fluorescence measurements showed low biological activity in the surface layer. For more details on species composition see the separate algal report, AlgaAware.

The Kattegat and the Sound

The temperature in the surface water was normal for the season and varied between 2.7 and 4.6 °C. The surface salinity was generally lower than normal and ranged in the southern parts from 15.3 to 18.8 psu and in the northern parts from 20.2 to 23.2 psu. In the Sound the salinity was around 9 psu, which is lower than normal. A weak stratification was found at 10 - 20 meters depth.

The mapping of the winter pool of nutrients in Kattegat showed that the concentrations in the surface water were normal or lower than normal. The only exception was the station Fladen, which showed elevated concentrations of phosphate and silicate. Generally, the amount of all nutrients had increased since the last visit in December and the highest concentration were found in the western parts of Kattegat. The phosphate concentration now ranged from $0.6 - 0.8 \mu mol/l$, inorganic nitrogen from $3.2 - 6.2 \mu mol/l$ and silicate varied between 7.8 to $12.7 \mu mol/l$.

As a result of the weak stratification the oxygen situation in the deep water was good. The oxygen concentration in the bottom water was > 6 ml/l at all stations in Kattegat. The plankton activity was low in the whole investigated area.

SMHI

The Baltic Proper

The temperature of the surface layer was above normal in the whole Baltic Proper and varied from 3.7° C to 6.1° C. Surface salinity was elevated in the Bornholm Basin, the Hanö Bight and in the Western Gotland Basin. The halocline and thermocline coincided and were found a 50 - 70 meters depth in the Western Gotland Basin, at 60 - 80 meters depth in the Eastern and Northern Gotland Basin, while found at shallower depth in the southern parts.

Phosphate concentrations in the surface water had risen even further since the previous cruise and in the Western Gotland Basin the concentration were high above normal, $0.8 - 1.0 \mu mol/l$. In the remaining parts the concentration ranged from 0.6-0.7 $\mu mol/l$. The concentrations of inorganic nitrogen (nitrite + nitrate) were normal and varied between 2.3 and 3.2 $\mu mol/l$. The silicate concentration was still below normal in the southern parts, while elevated above normal in the remaining parts of the Baltic Proper. The concentrations ranged from 7.4 to 16.8 $\mu mol/l$.

In the Eastern Gotland Basin, acute hypoxia (<2 ml/l) occurred at depths exceeding 70-80 metres. Similar to the previous cruise in December, completely oxygen-free conditions (anoxia) with hydrogen sulphide present were observed in the northern parts (BY20 and BY21) from 125 metres depth. At BY15, hydrogen sulphide was again present in the bottom water and from 150 - 225 meters depth the oxygen concentrations were low, < 0.7 ml/l. Hence, the effects of the inflow in December 2014 could not be detected further north than BY20 in the Eastern Gotland Basin. In the Western and Northern Gotland Basin the oxygen situation continues to be extremely bad. In the Western Gotland Basin anoxic conditions were found from depth exceeding 70 – 90 meters, while hypoxia was found from 50 - 70 meters depth. The Northern Gotland Basin had anoxic conditions from 100 meters depth and hypoxia from 80 - 90 meters depth. Oxygen levels in the bottom water in the Bornholm Basin, Hanö Bight and the south eastern Baltic Proper were still low and acute hypoxia prevailed.

Fluorescence measurements showed low biological activity.

Oxygen, SBE 43, 2 [ml/l]

Figure 1. Transect showing the oxygen and salinity from the Sound to the Gulf of Finland.

PARTICIPANTS

Name		Institute
Martin Hansson	Chief scientist	SMHI
Daniel Bergman-Sjöstrand		SMHI
Johan Håkansson		SMHI
Johan Kronsell		SMHI
Sari Sipilä		SMHI
Kristin Andreasson		SMHI

APPENDICES

- Track chart
- Table over stations, parameters and sampling depths
- Map showing bottom oxygen concentrations
 Monthly average surface water plots for selected stations
 Vertical profiles for selected stations

TRACKCHART Country: Sweden Ship: R/V ARANDA Date: 20160107-20160115 Series: 0001-0040

SMHI Ocean enh	* * * * * * * * * *	Hydrog: series	raphic		Ship: 01 Year: 20	-Aranda 16				* * * * * * * * * * * *								Date: Time:	: 201 : 22:	6-01- 09	-20
			Dili		Dalla					WGGT G	DDGDGGG										
Ser Stat P Station	- Lat	LOII	Date	hhmm	BOLLOM	donth	wind		r Air	wesi e	PPCP221	NO de		20	н Р 2 о		v IV I o h v		нь.	P P 1	
no code i			yyyyiiiiida	111111111	ueptii	ueptii m	ui v	e le	np pres	acac d	Cilvooo	ue (= a 1 m 1	1 X	200	+ 2 -	2 1 0	- F O	ma		1 m
-				ucc	iii				c iira	+11	mot PBw		n i	a a	ייכ		יתה	1 2 3		IN C C	, m
L										hd	Prp 1	1	?⊥ n	9			. 11 1	1	a i		m
0001 GEXX00EXT CTD TEST	N5939 51	E2323 92	20160107	1910	50		04	4 - 14	0 1014	7999 x		8					/				- x
0002 BPNX27EXT BY21	N5826.5	E2020	20160108	0502	121		12	8 -6	.6 1009	7990 x		14	x x ·		x -						
0003 BPEX26BAS BY20 FÅRÖDJ	N5800	E1953	20160108	0822	195	8	13 1	1 -7	.5 1007	2740 x	x	17 :	x x ·	- x	x x :	x x >	x x :	x - x			- x
0004 BPEX21BAS BY15 GOTLANDSDJ	N5720	E2003	20160108	1630	240	0	11	6	1 1003	9990 x	xxx	19 -	x x 1	. x	x x :	x x 3	 				- x
0005 BPEX21EXT BY15 GOTLANDSDJ	N5720	E2003	20160108	1800	240		12	9 – 5	3 1002	9990 x		5 1	x x .	- x	x x :	x x 3	 	x - x			
0006 BPEX13BAS BY10	N5638	E1935	20160108	2310	141		12		0 1002	9990 x	x	15	x x .	- x	- x :	x x 3	 	x - x			- x
0007 BPSELLBAS BCS III-10	N5533 3	E1824	20160100	0605	90		07	4 0	4 1002	8830 v		12 -	 	~ ~		 		- x			- v
0008 BPSB07BAS BY5 BORNHOLMSDJ	N5515	E1559	20160109	1415	91		21	4 3	6 1005	2820 x		12 -	× × 1	 		 		 	x -		
0000 BISBOTENS BIS BOUNDEMBES	N5523	E1520	20160109	1730	91		18	a 1	2 1005	0000 x		12 -	· · · ·			~ ~ `					
0010 BESDOORS BIY CHRISTIANSO	N5500	E1320	20160109	2310	47		16 1	2 2	0 1003	0000 v		8 -	· ~ .	- ~		 					. v
0011 BDSA03BAS B12 ARRONA	N5500	E1318	20160110	0230	46		14 1	1 2	1 1002	0000 v		8 -	 	- ~		 		- ~			
0012 SOCY44BAS ÖPESIND-4	N5538 8	E1257 3	20160110	0230	15		13 1	0 2	5 997	2820 ~		4 -	· ~ .	- ~		 					
0012 SOCKIIDAS ORESUND 7	N5536.0	E1237.3	20160110	0723	10		1/ 1	0 <u>2</u> 2 2	6 996	2020 x	V		· ~ .			 					
0014 COCY20DAC M LANDCEDONA	NJJ40.2	E1247.0	20160110	1015	19		14 1	2 2 E 0	2 006	2030 A		0.		·							
0015 VAEV22DAC VILLEN	N5552.0	E1245.0	20160110	1200	22		12 1	5 Z	. 5 990	2030 X	x	э. с.	~ ~ -	· X				. – x			
0015 KAEASSBAS KULLEN 0016 KAMVIADAG 025 KATTEGAT OM	N5014 NE607 0	E1222.2	20160110	1715	40		15 1	0 Z 7 1	.0 992	2020 X	x	0.	~ ~ -	· X				. – x			
0017 KAWA11DAG 400 ÅLDODG DUGT	N5607.9	E1109.0	20160110	2125	40		16	/ 1 0 2	.0 990	0000 v	x	9. / -	~ ~ -	· X				. – x			
0010 KAWAIIBAS 409 ALBORG BUGI	N5051.4	E1047.5	20160110	2135	15		10	83	.4 990	9990 X	x	4 2	<u> </u>	· x	- x :	к x x	(X)	(– x			
0010 KANXU9BAS LASO RANNA	N5/1/.0	E1044.5	20160111	0045	44		17	/ 2 F 2	./ 985	9990 X	x	9 2	<u> </u>	· x	- x :	<u>к х х</u>	(X)	<u> </u>			x
0019 KANKU/BAS GF9	N5/20	E1042.5	20160111	0230	20		1/	53 57	.0 985	9990 X	x	0	<u> </u>	· x	- x :	<u>к х х</u>	(X)	<u> </u>			_
UU2U KANXU6BAS GF8	N5/2/.9	E1054	20160111	0340	40	-	10	5 3	.0 989	9990 X	x	1 5 2	κx-	·x	- x :	K X X	CX 3	c – x			×x
UUZI SKEXI8BAS AL/	N5816.5	E1030.8	20160111	1015	348	5	09	/ 2	.0 990	0030 X	xxx	10 1	x x x	i x	- x :	K X X	(X)	: - x			x
UU22 SKEXI/BAS A16	N5816	E1043.5	20160111	1015	201	_	08		./ 990	2830 X		13 .									-
UU23 SKEXI6BAS AI5	N5817.7	E1051	20160111	1130	136	7	10	6 I	.8 990	4830 x	x	12 3	xx-	·x	- x :	ĸхх	C X >	(– x			·X
0024 SKEXI5BAS A14	N5819	E1056.5	20160111	1300	111		80	63	.0 990	6820 x		11 .		• -							-
UU25 SKEX14BAS AI3	N5820.2	EII02	20160111	1400	104		09	5 2	.0 990	6820 x	x	10 3	xx-	·X	- x 2	xxx	C X X	(– x			х
0026 FIBG27BAS SLAGGO	N5815.5	E1126.0	20160111	1615	75		09	3 I	.5 991	. 9990 x	xxx	9 2	xx-	·x	- x :	XXX	x x 3	(X X			· -
UU27 SKEX23BAS P2	N5752	EIII8	20160111	2250	94		10	4 2	.7 991	. 4990 x	-x	10 :	xx-	- x	- x :	XXX	(X)	c – x			· -
0028 KANX04BAS GF6	N5732	E1119.5	20160112	0125	44		13	6 1	.4 991	. 9990 x	x	9 :	xx-	- x	- x :	ххх	< X 3	c – x			· -
0029 KANX25BAS FLADEN	N5711.5	E1140	20160112	0410	68		09	5 1	.9 991	9990 x	x	11 :	xx-	- x	- x :	ххх	< X 3	c – x			· -
0030 KANX26BAS L:A MIDDELGRUND	N5657.5	E1145.5	20160112	0620	64		09	6 2	.0 991	9990 x	x	11 :	xx-	- x	- x :	ххх	C X 3	c – x			· -
0031 KANX50BAS N14 FALKENBERG	N5656.40	E1212.70	20160112	0845	31		09	72	.5 992	2820 x	-xxxx	7 :	x x >	cχ	- x :	ххх	(X)	C X X			· -
0032 KAEX29BAS ANHOLT E	N5640.0	E1207.0	20160112	1100	63	7	11	6 3	.7 992	2820 x	-xxxx	10 :	x x -	·x	- x :	ххх	(X)	(x x			·x
0033 KAEX30BAS ST MIDDELGRUND	N5634	E1213	20160112	1250	50	7	10	5 3	.4 993	2820 x	x	9 :	xx-	·х	- x :	ххх	C X 3	c – x			·x
0034 KAEL63BAS LAHOLM-3 (YG)	N5633.3	E1234	20160112	1430	23		10	4 2	.6 993	2820 x	x	5 3	кх-	·х	- x :	ххх	<pre>x ></pre>	c – x			
0035 BPSH05BAS HANÖBUKTEN	N5537	E1452	20160113	0520	78		03 1	1 -1	.9 998	9990 x	x	11 :	кх-	·х	- x :	ххх	(X)	c - x			·x
0036 BPWK01BAS REF M1V1	N5622.25	E1612.1	20160113	1145	21	5	34 1	0 - 3	.4 1001	1130 x	-xxxx	5 3	κхэ	ζХ	- x 2	ххх	(X)	схх			· -
0037 BPWX45BAS BY38 KARLSÖDJ	N5707	E1740	20160114	0030	110		00	0 - 3	.9 1005	9990 x	x	14 :	кх-	- x	ххх	ххх	(X)	c - x			·x
0038 BPWX38BAS BY32 NORRKÖPINGSDJ	N5801	E1759	20160114	0940	201		00	0 - 5	.7 1007	2850 x	x	17 3	кх-	- x '	ххз	ххх	(X)	c - x			·x
0039 BPNX37BAS BY31 LANDSORTSDJ	N5835	E1814	20160114	1450	438		34	8 - 7	.6 1008	1330 x	-xxxx	23 3	κхэ	c x	ххх	ххх	(X)	схх			·x
0040 BPNX35BAS BY29	N5853	E2019	20160114	2320	161		01	3 - 3	.3 1007	7990 x	x	15 :	xx-	- x	xxx	хху	< X 2	< - x			·x

Bottom water oxygen concentration (ml/l)

Country:	Finland
Ship :	Aranda
Date :	20160107-20160114
Series :	0001-0040

STATION BY20 SURFACE WATER

Vertical profiles BY20 January

STATION BY15 SURFACE WATER

Vertical profiles BY15 January

STATION BY10 SURFACE WATER

Vertical profiles BY10 January

STATION BCS III-10 SURFACE WATER

Vertical profiles BCS III-10 January

STATION BY5 SURFACE WATER

Vertical profiles BY5 January

STATION BY4 SURFACE WATER

Vertical profiles BY4 January

STATION BY2 SURFACE WATER

Vertical profiles BY2 January

STATION BY1 SURFACE WATER

Vertical profiles BY1 January

STATION W LANDSKRONA SURFACE WATER

Vertical profiles W Landskrona January Mean 1996-2010 St.Dev. Temperature °C Salinity psu Oxygen ml/l Depth 10 12 PO₄ µmol/l SiO₃ µmol/l DIN µmol/l

STATION Å17 SURFACE WATER

Vertical profiles Å17 January

STATION Å15 SURFACE WATER

Vertical profiles Å15 January

STATION Å13 SURFACE WATER

Vertical profiles Å13 January

STATION SLÄGGÖ SURFACE WATER

Vertical profiles Släggö January

STATION P2 SURFACE WATER

Vertical profiles P2 January

STATION FLADEN SURFACE WATER

Vertical profiles Fladen January

STATION N14 Falkenberg SURFACE WATER

Annual Cycles

Vertical profiles N14 Falkenberg January

STATION ANHOLT E SURFACE WATER

Vertical profiles Anholt E January

STATION HANÖBUKTEN SURFACE WATER

Vertical profiles Hanöbukten January

STATION REF M1V1 SURFACE WATER

STATION BY38 SURFACE WATER

Vertical profiles BY38 January

STATION BY32 SURFACE WATER

Vertical profiles BY32 January

STATION BY31 SURFACE WATER

Vertical profiles BY31 January

STATION BY29 SURFACE WATER

Vertical profiles BY29 January